Electronics Technology


Audi researching shock absorbers that harvest energy

5 October 2016 Electronics Technology

New technology from Audi aims to ease the pain of driving on rough roads, in more ways than one. The company is working on a prototype called eROT, in which electromechanical rotary dampers replace the hydraulic dampers used today for an even more comfortable ride.

The principle behind eROT is explained by Dr.-Ing. Stefan Knirsch, board member for technical development : “Every pothole, every bump, every curve induces kinetic energy in the car. Today’s dampers absorb this energy, which is lost in the form of heat. With the new electromechanical damper system in the 48 volt electrical system, we put this energy to use. It also presents us and our customers with entirely new possibilities for adjusting the suspension.”

The technology is based on a high-output 48 V electrical system. As currently configured, its lithium-ion battery offers an energy capacity of 0,5 kilowatt hours and peak output of 13 kilowatts. A DC converter connects the 48 V electrical subsystem to the 12 V primary electrical system, which includes a high-efficiency, enhanced output generator.

eROT responds quickly and with minimal inertia. As an actively controlled suspension, it adapts ideally to irregularities in the road surface and the driver’s driving style. A damper characteristic that is virtually freely definable via software increases the functional scope. It eliminates the mutual dependence of the rebound and compression strokes that limits conventional hydraulic dampers.

The system allows Audi to configure the compression stroke to be comfortably soft without compromising the taut damping of the rebound stroke. Another advantage of the new damper system is its geometry. The horizontally arranged electric motors in the rear axle area replace the upright telescopic shock absorbers, which allows for additional space in the luggage compartment.

The eROT system enables a second function besides the freely programmable damper characteristic: It can convert the kinetic energy during compression and rebound into electricity. To do this, a lever arm absorbs the motion of the wheel carrier. The lever arm transmits this force via a series of gears to an electric motor, which converts it into electricity. The recuperation output is 100 to 150 W on average during testing on German roads – from 3 W on a freshly paved freeway to 613 W on a rough secondary road. Under customer driving conditions, this corresponds to CO2 savings of up to three grams per kilometre.

Audi says that, since initial test results for eROT technology are promising, its use in future production models is plausible. A prerequisite for this is the 48 V electrical system, which is a central component of the company’s electrification strategy. In the next version planned for 2017, the 48 V system will serve as the primary electrical system in a new Audi model and feed a high-performance ‘mild hybrid drive’. It will offer potential fuel savings of up to 0,7 litres per 100 kilometres.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Nanometre-precision piezo actuators
RS South Africa Electronics Technology
TDK Corporation has announced two new piezo actuators that are characterised by a wide dynamic range, a high force-to-volume ratio, but with precision in the nanometre range.

Read more...
Webinar: The evolving electrification of the power distribution system
Infineon Technologies Electronics Technology
New connected car functionality, along with the necessity to reduce the cost, weight and complexity associated with wire harnesses, has led to the transformation of the power distribution system in automotive engineering.

Read more...
Improved MnZn material for power conversion industry
Sivan Electronic Supplies Electronics Technology
Cosmo Ferrites Ltd, a leading manufacturer of soft ferrites, has launched an improved version of CF295 for the power conversion industry.

Read more...
Common mode filter for automotive Ethernet
Avnet Abacus Electronics Technology
TDK Corporation has announced the introduction of its new ACT1210E Series common mode filter for automotive Ethernet 10BASE-T1S.

Read more...
Energising the industrial edge
Electronics Technology
As if the drive to decarbonise energy as part of sustainability and climate change efforts was not enough, the recent rise in energy prices has brought into sharp contrast the need to re-examine how we generate, distribute, and consume electricity.

Read more...
Samsung begins chip production using 3 nm process technology
EBV Electrolink Electronics Technology
The optimised 3 nm process with GAA architecture achieves 45% lower power usage, 23% improved performance and 16% smaller surface area compared to 5 nm process.

Read more...
Panasonic releases its updated touch-sensitive knob
Altron Arrow Electronics Technology
Panasonic, in conjunction with Microchip, has launched an update to its existing Magic Knob, a capacitive knob ready for standard touch sensors for use in controlling automotive information displays.

Read more...
Microchip’s new IC to replace Hall effect position sensors
Altron Arrow Electronics Technology
The LX34070 IC from Microchip is set to help accelerate the global move away from expensive and less accurate magnet-based solutions for safety-critical EV motor position monitoring.

Read more...
A brief history of HBTs
Conical Technologies Electronics Technology
In 1947 the engineers at Bell Labs were tasked with developing a transistor. This development heralded the beginning of the semiconductor industry which changed the world forever. Transistors would have ...

Read more...
Research project achieves major advance toward fusion energy
Electronics Technology
New superconducting magnet designed by MIT breaks magnetic field strength records, paving the way for practical, commercial, carbon-free power.

Read more...