mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2017


 

Production cycle of a sealed lead-acid battery
15 November 2017, This Week's Editor's Pick, Power Electronics / Power Management

It’s easy when commissioning or simply plugging a battery into the device it is destined for, to overlook all the steps that went into its production. Often the minerals that are used in making a battery are mined in one country and processed in another, for example, and by the time it leaves the factory it will have undergone numerous quality checks. Just as it can be enlightening to know where our food comes from (and some people insist on knowing), understanding what goes into making a sealed lead-acid (SLA) battery can provide assurance that it was created with care, and confidence that it can be trusted to power its application reliably.

The manufacturing process of an SLA battery can be broadly divided into the following stages: oxide and grid production; pasting and curing; plate formation; assembly; electrolyte filling; charge-discharge process;, finished product inspection; packing and dispatch.

Oxide and grid production

First of all, a lead ingot is ground into lead powder and gets oxidised, then mixed with the alloy additive. This is the basic material that makes up the battery pastes. To make a grid it needs to be cast, which is done by melting the material in a melting pot, and then pouring this molten lead into the patterns of the battery grid. By contrast, when a stamping operation is used, the battery grids are made by stamping them from lead sheets. Once these grids have cooled after casting, they are passed to a trimming machine to trim the rough edges and casting gates.

Plate production

There are several steps involves in producing the battery plates. These include pasting, curing, plate formation, drying, polishing and cutting.

Pasting is probably the most important aspect because the material and formula of the paste is a top secret to the battery’s manufacturer. The paste contains the active material for the grid and is the essential ingredient in creating a reaction in the cell.

These pastes are used to fill the positive and negative grids, but they are not all the same. Depending on the design, they can be made up of different chemical compounds mixed in different proportions to generate the active materials for the battery cell. These pastes are then forced on the interstices of the grids to make the pasted plates. These pasted plates will be cured in ovens under controlled conditions of temperature and humidity, after which they are allowed to dry at ambient temperatures.

The next step is plate formation, whereby the plates are dipped into the sulphuric acid mixer and then charged by using a rectifier. This process continues for around 16 to 24 hours. After that, the plates are moved into the wash tank, then sent to an oven for drying.

The final production step the plates need to go through is the polish and cutting process. after which they are ready for assembly.

Assembling and filling

In this stage, all the component parts – plates, separators, cover, safety valves, O-rings and terminals – are assembled into a battery case and then sealed. This in turn requires several steps such as plate stacking, insertion of separators, group welding, cell insertion, cross-bridge welding (inter-cell connector and plate connecting), cover sealing, terminal placing and electrolyte filling.

In the stacking step, positive and negative plates are strapped to a suitable rack, stacked together and a separator is inserted in between them. The common type of separator used in an SLA battery is AGM (absorbent glass mat) which is a glass mat specially designed to wick the battery electrolyte between the battery plates.

The purpose of the welding process is to collect the stack of plates and separators to form a solid group; these elements are then inserted into the battery cells and welded to the respective positive and negative posts on the battery’s case top.

Following that, what remains to be done is to place the terminals and weld the poles, and then put on the cover to seal the battery. At this stage the only thing still to be done to complete the assembly process is to fill the battery with electrolyte, then send it for the first charge of its life.

Charging, inspection and packing

A battery’s charging process must be carefully controlled, and may require 36 to 48 hours depending on its size. A low charging rate is generally employed such that the battery will be discharged and recharged several times to attain the best working conditions.

After charging and discharging, the battery will be set aside for 5 to 7 days, during which it will undergo several inspections and tests by specialised instruments. Before it can be sent for packaging, it also needs to pass a capacity test, OCV interior resistance test and high rate discharge test to rule out any defects.

Finally, the battery is now ready to be packaged, shipped and delivered to the customer to install and commission it in preparation for a long and productive life in its intended application.

For more information contact Forbatt SA, +27 (0)11 469 3598, sales@forbatt.co, www.forbatt.co


Credit(s)
Supplied By: Forbatt SA
Tel: +27 1 469 3598
Fax: +27 11 469 3932
Email: sales@forbatt.co
www: www.forbatt.co/index.php
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • High-voltage contactors
    16 May 2018, Electrocomp, Switches, Relays & Keypads, Power Electronics / Power Management
    The new HVC200A from TDK is a bipolar, high-voltage contactor for the switching of high DC voltages and currents. It is designed for operating voltages of up to 450 V d.c. and a high continuous current ...
  • UCT fund helps engineering student beat the odds
    18 April 2018, This Week's Editor's Pick, News
    Last year the fund assisted 76 engineering students with their individual needs, at a cost of R383 000.
  • Connectivity and reliable power – the keys to Africa’s 4th Industrial Revolution
    18 April 2018, Forbatt SA, Power Electronics / Power Management, Test & Measurement
    Our opportunities in the 4th Industrial Revolution are dead in the water without reliable and portable power.
  • The rise of edge computing
    18 April 2018, TRX Electronics, This Week's Editor's Pick, Computer/Embedded Technology
    Edge computing in relation to IoT is opening up new opportunities for embedded designers.
  • Embedded deep learning framework for FPGAs
    18 April 2018, ASIC Design Services, This Week's Editor's Pick, Programmable Logic
    ASIC Design Services has developed a scalable and flexible embedded deep learning solution that allows for the implementation of a wide range of convolutional neural networks on FPGAs.
  • Smart grid management system developed by Cape Town company
    18 April 2018, Arrow Altech Distribution (AAD), This Week's Editor's Pick, News
    Based in Cape Town, CT Lab is a technology company specialising in the monitoring and management of electrical networks in the energy distribution, facility and industrial sectors. The company offers ...
  • High-voltage contactors
    18 April 2018, Electrocomp, Switches, Relays & Keypads, Power Electronics / Power Management
    The new HVC200A from TDK is a bipolar, high-voltage contactor for the switching of high DC voltages and currents. It is designed for operating voltages of up to 450 V d.c. and a high continuous current ...
  • R&D tax incentive applications streamlined
    21 March 2018, This Week's Editor's Pick, News
    The South African government has reduced the red tape required for companies to apply for a research and development (R&D) incentive, by reducing the turnaround time to 90 days.
  • Local manufacturers look forward to a brighter future
    21 March 2018, Omnigo, SMTech, Grand Tellumat Manufacturing, This Week's Editor's Pick, News, Manufacturing / Production Technology, Hardware & Services
    Dataweek interviewed three South African electronics contract manufacturers to find out what they’ve been up to lately, and what their outlook is.
  • Lessons learned from an ECM and the customer that sued them
    21 March 2018, MyKay Tronics, This Week's Editor's Pick, Manufacturing / Production Technology, Hardware & Services
    The plaintiff created a new technology that consisted of a sensor and a receiver, but lacked the ability to produce it. Enter the contract manufacturer, soon to be the defendant.
  • Industry urged to submit waste management plans
    21 February 2018, This Week's Editor's Pick, News
    Bubele Nyiba, CEO of the ROSE Foundation, believes that although formalised plans will benefit the environment, a pivotal question is who will ultimately bear the cost for their implementation.
  • Power designers are being challenged by spec changes
    21 February 2018, Supreme Electro Magnetics, This Week's Editor's Pick, Power Electronics / Power Management
    A survey conducted by Vicor has revealed that mitigating the impact of inevitable changes to power system requirements is essential to ensure projects are on time and within budget.

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.