News


Another material shows potential as successor to silicon

8 October 2014 News

The twists and turns keep coming in the quest to find the material that will succeed silicon as the basis for the next generation of semiconductors, as the push continues to keep pace with Moore’s Law, which has consistently shown an uncanny ability to predict (or in certain respects pre-empt) the rate of development in electronics technologies.

Just weeks after Dataweek reported on the latest breakthrough in graphene development, news comes that another material is showing promise as competition to graphene.

An international collaboration of researchers led by a scientist with the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first experimental observation of ultrafast charge transfer in photo-excited, two-dimensional semiconductors known as MX2 materials. The recorded charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Illustration of a MoS<sub>2</sub>/WS<sub>2</sub> heterostructure with a MoS<sub>2</sub> monolayer lying on top of a WS<sub>2</sub> monolayer. Electrons and holes created by light are shown to separate into different layers.
Illustration of a MoS2/WS2 heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers.

“We’ve demonstrated, for the first time, efficient charge transfer in MX2 heterostructures through combined photoluminescence mapping and transient absorption measurements,” says Feng Wang, a condensed matter physicist with Berkeley Lab’s materials sciences division and the University of California (UC) Berkeley’s physics department.

“Having quantitatively determined charge transfer time to be less than 50 femtoseconds, our study suggests that MX2 heterostructures, with their remarkable electrical and optical properties and the rapid development of large-area synthesis, hold great promise for future photonic and optoelectronic applications.”

MX2 monolayers consist of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulphur (S). The resulting heterostructure is bound by the relatively weak intermolecular attraction known as the van der Waals force.

These 2D semiconductors feature the same hexagonal ‘honeycombed’ structure as graphene and superfast electrical conductance, but, unlike graphene, they have natural energy band-gaps. This facilitates their application in transistors and other electronic devices because, unlike graphene, their electrical conductance can be switched off.

“Combining different MX2 layers together allows one to control their physical properties,” explains Wang. “For example, the combination of MoS2 and WS2 forms a type-II semiconductor that enables fast charge separation. The separation of photoexcited electrons and holes is essential for driving an electrical current in a photodetector or solar cell.”

In demonstrating the ultrafast charge separation capabilities of atomically thin samples of MoS2/WS2 heterostructures, Wang and his collaborators have opened up potentially rich new avenues, not only for photonics and optoelectronics, but also for photovoltaics.

“MX2 semiconductors have extremely strong optical absorption properties and, compared with organic photovoltaic materials, have a crystalline structure and better electrical transport properties,” Wang says. “Factor in a femtosecond charge transfer rate and MX2 semiconductors provide an ideal way to spatially separate electrons and holes for electrical collection and utilisation.”

Wang and his colleagues are studying the microscopic origins of charge transfer in MX2 heterostructures and the variation in charge transfer rates between different MX2 materials. “We’re also interested in controlling the charge transfer process with external electrical fields as a means of utilising MX2 heterostructures in photovoltaic devices,” Wang concludes.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...
Indium celebrates 90 years of innovation
Techmet News
The company’s innovative products, especially its advanced soldering solutions, are found in many common consumer electronics and high-reliability technologies.

Read more...
Revamped technical training centre in Welkom
News
Resolution Circle has announced the launch of its newly revamped training centre in Welkom, which will enhance technical education and foster industry partnerships.

Read more...
From the editor's desk: Funga: The unseen rulers of a new kingdom
Technews Publishing News
Up until a few weeks ago, our classification kingdoms were split into two parts; fauna and flora. I was amazed when I recently read that National Geographic has now changed this and has split the classification ...

Read more...
Hiconnex announces new partnership
Hiconnex News
With over 60 years of experience in the civil, military aeronautics, and space industries, Petercem offers robust solutions for position detection and human machine interfaces.

Read more...
Global semiconductor sales increase YoY
News
The Semiconductor Industry Alliance (SIA) has announced global semiconductor sales totalled $47,6 billion during the month of January, an increase of 15,2% compared to January 2023.

Read more...
Utility-scale solar development for local company
News
Teraco has announced that it has secured its first grid capacity allocation from Eskom, and will commence construction of a 120 MW utility-scale solar PV energy facility in the Free State province.

Read more...
Collab between Arrow and Infineon
Altron Arrow News
Arrow Electronics, represented by Altron Arrow in South Africa, and its engineering services company, eInfochips, are working with Infineon Technologies to help eInfochip’s customers accelerate the development of EV chargers.

Read more...
Printing as a subscription
News
HP has done the unthinkable and released its All-In Plan, a subscription-based printing solution that has many IT professionals and business users shaking their heads.

Read more...