Electronics Technology


Memristor pioneer releases new devices plus data for modelling

24 February 2016 Electronics Technology

Knowm, which holds the distinction of being the first company to ever bring a memristor to market, has released two new variants of its device, as well as raw device data aimed at aiding researchers’ ability to develop and improve memristor models.

The memristor, the long sought-after fourth basic circuit element initially theorised in 1971, not only hold “tremendous potential to advance digital computing, they also provide the unique physical properties needed to directly map learning and inference to physical circuits and create extremely efficient AI,” in the words of Alex Nugent, CEO and co-founder of Knowm. “Our growing memristor portfolio and the available data will help to drive the industry forward, providing researchers with the tools they need to develop for this exciting new era of electronics and computing.”

The two new memristors, as well as the company’s previously announced device, are now available in raw die (unpackaged) form with masks specifically designed for research probe stations, which reduces measurement issues that can be introduced in packaging, such as wire-bond contact resistance.

Knowm’s memristors now come in three variants: Tungsten (W), Tin (Sn) and Chromium (Cr), which refers to the materials introduced in the active layer during fabrication. These devices have been designed for higher operating resistance and lower adaptation thresholds, properties desirable in low-power computing applications. Each device has unique electrical properties, which allows circuit engineers to exploit these variations in their designs.

The company is also selling raw memristor data for researchers and engineers. Currently electrical engineers looking to design new memristor circuits typically use idealised models that deviate substantially from physical reality. Having abundant raw data is the cornerstone of accurate model development, and accurate models are critical to integrated circuit design.

Integrated electronics are expensive in part due to the cost of mask fabrication. If a circuit is built to exploit the properties of memristors, but the mathematical models used in simulations are not accurate, the chip will likely fail, resulting in the loss of millions of dollars. “The potential of memristors is so huge that we are seeing exponential growth in the literature, a sort of gold-rush as engineers race to design new circuits and re-envision old circuits,” added Nugent. “The problem is that in the race to publish, circuit designers are adopting models that do not adequately describe real devices. The only way to really fix this problem is to get the raw data out there and compete to develop and improve the mathematical models.”

For more information visit www.knowm.org





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Nanometre-precision piezo actuators
RS South Africa Electronics Technology
TDK Corporation has announced two new piezo actuators that are characterised by a wide dynamic range, a high force-to-volume ratio, but with precision in the nanometre range.

Read more...
Webinar: The evolving electrification of the power distribution system
Infineon Technologies Electronics Technology
New connected car functionality, along with the necessity to reduce the cost, weight and complexity associated with wire harnesses, has led to the transformation of the power distribution system in automotive engineering.

Read more...
Improved MnZn material for power conversion industry
Sivan Electronic Supplies Electronics Technology
Cosmo Ferrites Ltd, a leading manufacturer of soft ferrites, has launched an improved version of CF295 for the power conversion industry.

Read more...
Common mode filter for automotive Ethernet
Avnet Abacus Electronics Technology
TDK Corporation has announced the introduction of its new ACT1210E Series common mode filter for automotive Ethernet 10BASE-T1S.

Read more...
Energising the industrial edge
Electronics Technology
As if the drive to decarbonise energy as part of sustainability and climate change efforts was not enough, the recent rise in energy prices has brought into sharp contrast the need to re-examine how we generate, distribute, and consume electricity.

Read more...
Samsung begins chip production using 3 nm process technology
EBV Electrolink Electronics Technology
The optimised 3 nm process with GAA architecture achieves 45% lower power usage, 23% improved performance and 16% smaller surface area compared to 5 nm process.

Read more...
Panasonic releases its updated touch-sensitive knob
Altron Arrow Electronics Technology
Panasonic, in conjunction with Microchip, has launched an update to its existing Magic Knob, a capacitive knob ready for standard touch sensors for use in controlling automotive information displays.

Read more...
Microchip’s new IC to replace Hall effect position sensors
Altron Arrow Electronics Technology
The LX34070 IC from Microchip is set to help accelerate the global move away from expensive and less accurate magnet-based solutions for safety-critical EV motor position monitoring.

Read more...
A brief history of HBTs
Conical Technologies Electronics Technology
In 1947 the engineers at Bell Labs were tasked with developing a transistor. This development heralded the beginning of the semiconductor industry which changed the world forever. Transistors would have ...

Read more...
Research project achieves major advance toward fusion energy
Electronics Technology
New superconducting magnet designed by MIT breaks magnetic field strength records, paving the way for practical, commercial, carbon-free power.

Read more...