Power Electronics / Power Management


Solar cell efficiency faces hybrid revolution

19 November 2014 Power Electronics / Power Management

A team of researchers at the UK’s University of Cambridge may have unlocked the potential for solar cells to reach efficiency levels far higher than any technology currently available. They have developed a new method for harvesting the energy carried by particles known as ‘dark’ spin-triplet excitons with close to 100% efficiency.

Specifically, the researchers have successfully harvested the energy of triplet excitons and transferred it from organic to inorganic semiconductors. To date, this type of energy transfer had only been shown for spin-singlet excitons. In the natural world, excitons are a key part of photosynthesis: light photons are absorbed by pigments and generate excitons, which then carry the associated energy throughout the plant. The same process is at work in a solar cell.

When light is absorbed in pentacene, the generated singlet excitons rapidly undergo fission into pairs of triplets that can be efficiently transferred onto inorganic nanocrystals.
When light is absorbed in pentacene, the generated singlet excitons rapidly undergo fission into pairs of triplets that can be efficiently transferred onto inorganic nanocrystals.

In conventional semiconductors such as silicon, when one photon is absorbed it leads to the formation of one free electron that can be extracted as current. However, in pentacene, a type of organic semiconductor, the absorption of a photon leads to the formation of two electrons. But these electrons are not free and they are difficult to pin down, as they are bound up within ‘dark’ triplet exciton states.

Excitons come in two ‘flavours’: spin-singlet and spin-triplet. Spin-singlet excitons are ‘bright’ and their energy is relatively straightforward to harvest in solar cells. Triplet-spin excitons, in contrast, are ‘dark’, and the way in which the electrons spin makes it difficult to harvest the energy they carry.

“The key to making a better solar cell is to be able to extract the electrons from these dark triplet excitons,” said Maxim Tabachnyk, a Gates Cambridge Scholar at the University’s Cavendish Laboratory. “If we can combine materials like pentacene with conventional semiconductors like silicon, it would allow us to break through the fundamental ceiling on the efficiency of solar cells.”

Using state-of-the-art femtosecond laser spectroscopy techniques, the team discovered that triplet excitons could be transferred directly into inorganic semiconductors, with a transfer efficiency of more than 95%. Once transferred to the inorganic material, the electrons from the triplets can be easily extracted.

“Combining the advantages of organic semiconductors, which are low-cost and easily processable, with highly efficient inorganic semiconductors, could enable us to further push the efficiency of inorganic solar cells, like those made of silicon,” said Dr Akshay Rao, who led the team behind the work.

The team is now investigating how the discovered energy transfer of spin-triplet excitons can be extended to other organic/inorganic systems and are developing a cheap organic coating that could be used to boost the power conversion efficiency of silicon solar cells.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Local procurement should be top of mind in mine-owned solar power projects
Power Electronics / Power Management
Recent changes in government legislation have enabled businesses to develop up to 100 MW energy plants with very little red tape.

Read more...
The next big shift in SA's energy infrastructure
Power Electronics / Power Management
High-voltage (HV) LiFePO4 battery energy storage systems, commonly referred to as BESS, which drastically improve the power reliability prospects for businesses, have been around for some time, but expect to see a massive surge in 2024.

Read more...
Multi-channel electronic load series
Conical Technologies Power Electronics / Power Management
ITECH has recently announced the release of their upgraded IT8700P+ series multi-channel electronic loads. This new series supports master-slave parallel configuration between all the modules, allowing for different modules to be mixed and matched for synchronisation.

Read more...
Self-extinguishing batteries
Power Electronics / Power Management
The most commonly used electrolyte, which is highly combustible – a medium composed of a lithium salt and an organic solvent – is replaced with materials found in a commercial fire extinguisher.

Read more...
Input power bus conditioners
Accutronics Power Electronics / Power Management
The FLHG-60 and the FLHGI-60 are designed to be used as the front-end to the company’s MGDD N input series, to develop full power solutions.

Read more...
Isolated power module with high efficiency
RS South Africa Power Electronics / Power Management
The new MagI3C-FISM power module, with an integrated switching power stage, is 100% pin-to-pin compatible with the previous versions.

Read more...
Hi-Rel DC-DC converter
Accutronics Power Electronics / Power Management
The MGDD-06 series from GAÏA Converter is an ultra-wide input 6 W family of power converter modules, with a permanent input voltage range of 9 to 160 V DC.

Read more...
Energy measurement IC
CST Electronics Power Electronics / Power Management
The SY7T501 and SY7T502 are Silergy’s newest energy measurement ICs for cost-sensitive IoT applications such as smart-plugs, dimmers, power-strips, intelligent lighting, and other points of load.

Read more...
Reference design: USB-C PD and Qi charging
Power Electronics / Power Management
Infineon’s REF_TX15W_PD60W_N1 is the industry’s first turnkey solution to offer a PD and Qi multi-charger, allowing same-time charging via the USB-PC PD port and the Qi wireless power transmitter.

Read more...
SMD varistors with huge surge current capability
Electrocomp Power Electronics / Power Management
TDK Corporation has introduced two new varistor series in SMD design, the larger of the two capable of handling a surge current of 10 000 A.

Read more...