Manufacturing / Production Technology, Hardware & Services


Smart manufacturing is about more than just robots

EMP 2018 Electronics Manufacturing & Production Handbook Manufacturing / Production Technology, Hardware & Services

Automation in factories isn’t new. Today, though, the disruptive force of digital transformation is taking manufacturing far beyond automation. Industry 4.0, mass customisation, and advances in tech like 3D printing and nanomaterials have placed humanity at the cusp of several game changers when it comes to this $11,6 trillion industry.

I, Robot

Automation began back in the 1800s with mechanised cotton spinners, steam power, and the arrival of the first industrial revolution. By the 1930s, the automotive industry was leading the second industrial revolution of mass production, paving the way for the digital control systems of the ‘70s. In the 1980s, car makers became intensive adopters of industrial robots, at which point computers and automation were embodying the third industrial revolution.

Jump forward to more recent milestones, and Foxconn in China was running up to 10 automated production lines in some of its factories by the end of 2016, in the second phase of its three-phase full automation plan. Also in 2016, Adidas unveiled its first fully robot-built sneaker, one of 500 planned prototypes for its new factory in Germany. Though we’re not quite there yet, the arrival of lights-out manufacturing is a case of when, not if.

Automation is certainly not new, but digital transformation is so much more than robots assembling parts – it’s destined to disrupt every link in the manufacturing value chain and virtually lead us into the fourth industrial revolution: the cyber-physical age. As data takes centre stage, connectivity and cloud, big data and IoT, and AI and virtualisation will act in concert to create a new business paradigm.

But, there’s a problem: manufacturing enterprises have been sluggish when it comes to embracing digitalisation.

Why the slow start?

One major issue is outdated legacy infrastructure. The complexity of virtualising the production environment is exacerbated by IT systems that were deployed before cloud, inexpensive storage, and ubiquitous connectivity came along. Going fully digital is also risky: Shutting down an assembly line to fix a software or network failure could be cripplingly expensive for a manufacturer.

Connectivity requirements in smart manufacturing are very high, often to the tune of sub-millisecond latency and data rates of 10 Gbps, as in the case of machine vision and cooperative robots. Fortunately, that’s what the latest wireless network solutions deliver: high bandwidth, low latency, and reliable connections that can cut costs by up to 50% and energy consumption by 10%.

Equally significant, though, is the skills gap that exists in data analytics, a central facet of manufacturing and the source of insight into processes, faults, consumer habits, and much more. Many companies aren’t all that clear on how and where to deploy analytics solutions or how to use the huge volumes of data generated by sensors. And McKinsey estimates that there will soon be a shortage of around 1,5 million analytics experts in the US alone. While Forbes writer Meta S. Brown questions the McKinsey stats and analysis, she also identifies that the human factor is an issue, “Managers who have trouble finding analytics talent have usually not given enough thought to their business goals.”

Moreover, in a survey by Tata Consulting about big data analytics in manufacturing, the top problem identified by enterprises was building trust between data scientists and functional managers, which in turn creates a gap between data insights and how and which business strategies are executed. Of the 17 categories surveyed, the second biggest problem was determining what data to use for which business decisions, and the third was the inability to handle the volume and velocity of data generated by sensors. Simply put, manufacturers can’t and aren’t making the most out of the data they have access to.

The complexity of the manufacturing industry means that no coherent industry-wide digital transformation strategy exists, with individual enterprises digitising at different rates and in different directions. Moreover, many companies lack the agility to quickly shift from traditional goals like lean manufacturing. Indeed, the Tata Consulting survey found that the top three benefits of data analytics for manufacturers are still in line with the old-school aim of optimising processes: tracking product defects and quality, supply planning, and identifying manufacturing process defects.

Reflecting the industry’s commitment to lean processes, manufacturers have been relatively fast movers in analytics, smart sensors, and Industrial IoT (IIoT). That’s all well and good, but the productivity gains from 6 Sigma and lean manufacturing have petered out over the last five or so years, because processes have become as optimised as they can be.

A change in mindset

Not all enterprises are benefiting from the new service-oriented business models that can arise from abundant sensors and data insights. In contrast, Denzil Samuels, global head of channels and alliances for GE Digital, gives an example of how his company benefits airline customers with the data, IoT and service mix, “We can give the airline digital information in real time. That can help them with flight operations like scheduling crew and handling cargo. We can also provide data in a whole bunch of other areas by just selling them a jet engine.” Thus, GE is acting as a manufacturer and also as a service provider based on hardware embedded with smart sensors.

New business models aren’t just prompted by technology. Consumer expectations are leaning towards personalisation and faster delivery, both of which require a shift towards mass customisation, strong digital infrastructure and, more recently, drone delivery. However, many traditional manufacturers are slow to embrace the mindset of markets of one.

Mass customisation in action: unmade.com

Fashion startup Unmade enables customers to customise garments before they’re made, so customised designs can be produced at the same unit cost as mass-produced goods. Designed to avoid over-production and waste, the three elements of Unmade’s business model are personalisation, e-commerce and on-demand manufacturing. An online personalisation editor allows customers to change colours, patterns and logos on garments; the e-commerce model allows existing stock and customised pieces to be sold together; and on-demand manufacturing sends orders to partnering knitwear factories to be made. A press evaluation describes this model as, “Making the tools of factory production available at the click of a mouse, with no penalty for short production runs.”

Smart robotics and machine learning will help achieve advances in mass customisation. ABB, a leader in digital tech and robotics, is working with Huawei to combine wireless tech, smart sensors, and smart components to solve manufacturing challenges. According to Joni Rautavuori, president of ABB Robotics and Applications, “The development that is happening on smart components and sensors makes it possible to use machine learning to develop new ways of programming robots.” This increases the potential for adaptive programming, which in turn helps enable mass customisation.

Despite the flexibility and agility of companies like Unmade, mass customisation isn’t high on most manufacturers’ agendas. In fact, it comes in last in the Tata Consulting survey. However, given shifting consumer expectations, it is quite probable that this will change for many products.

The security issue

In March 2017, the tech mag Manufacturing Business Technology reported that manufacturing is the second most hacked industry after healthcare, in large part because of inadequate investment in security. Although cyber attacks cost businesses $400 billion in 2015, which is set to rise to $2,1 trillion per year by 2019, cybersecurity – like data analytics – lacks experts. Forbes cites the non-profit information security advocacy group, ISACA, which “predicts there will be a global shortage of two million cybersecurity professionals by 2019.”

The transition to Industry 4.0 is creating larger attack surfaces due to more complex networks, a vast number of connected IIoT devices, and big data processed in the cloud. Many companies lack a robust E2E information security solution that protects against attacks from a hacker’s armoury, including server, client, web, software and DDoS. Equally, on the R&D link of the chain, IPR and sensitive data requires a network solution that separates the R&D intranet from the office extranet, provides secure connections, and encourages collaboration.

Transitioning into the future

Germany’s Industry 4.0 might still draw a blank-face response from some business leaders, but it represents the next phase in manufacturing in Europe. Equivalents are the Industrial Internet in the US and Made in China 2025. All involve the convergence of a range of technological enablers and accelerators, the result of which will be connected, smart factories and smart manufacturing.

Smart manufacturing goes beyond computing and automation. It creates a cyber-physical system, or digital twin, as a virtual model of a process, product or service. Underpinned by ubiquitous, low-latency connectivity in the shape of 5G, smart sensors transmit data to the cloud where it’s processed and analysed to give contextual and predictive data.

Pairing a physical and virtual world has several advantages. GE Digital’s Denzil Samuels explains one advantage using the example of a jet engine on which smart sensors constantly transmit enough data to build a cyber copy, “The engine that’s now being simulated can take over the pain of major aircraft engine maintenance by replacing a single blade that’s worn as soon as we know about it. Or better still, predicting when it’ll get worn to the point when it needs replacing, so we can minimise the amount of time that the engine is actually out of commission.”

Moreover, the connectivity afforded by smart manufacturing links all processes from R&D, sourcing materials and production, to QA, sales, distribution and logistics.

Manufacturing 2025

Over the next decade, smart manufacturing will extend past individual factories to connect groups of factories and the manufacturing industry with other verticals.

The convergence of manufacturing and services will continue with the XaaS model based on IoT and data insights. Thus, the services that manufacturers will require and deliver based on the products they make will increase, many of which will be driven by data insights and consumer demand. In the B2C space, consumers in emerging economies will become a dominant market presence, while demand in developed countries will fragment. However, customisation in products and after-sales services are likely to increase.

3D printing will evolve from prototyping to a viable means of mass production in the 2020s. Advances in raw materials will enhance parts’ design, manufacturing processes and printing technology. At the same time, the use of nanomaterials, which we’re seeing today in products like clothing, sports goods and electronics, will expand into an industry worth $170 billion a year. Coupled with improvements in robotics and AI, new areas of demand will emerge.

Back to 2017, and C-suite executives need to consider how maturing technologies like AI, virtualisation and 3D printing will shape the future, alongside the connected manufacturing ecosystem of Industry 4.0 plus changing market dynamics. Despite advances in technology, we live in uncertain times. Strategic investment in digital infrastructure, skilled staff, and partnerships are the tools to make things happen in the next decade of smart disruption.

For more information visit www.huawei.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

Read more...
High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Read more...
Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Read more...
Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Read more...
Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Read more...
Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Read more...
Analog Devices and Mouser collaborate on eBook
Manufacturing / Production Technology, Hardware & Services
Mouser has released a new eBook in collaboration with Analog Devices, that offers a detailed analysis of the technologies being used to support sustainable manufacturing practices.

Read more...
Improved precision laser marking
RS South Africa Manufacturing / Production Technology, Hardware & Services
On-the-fly marking at high speeds is only one of the comprehensive features of Panasonic’s new LP-RH laser marker series.

Read more...
Optimising AOI performance
Rugged Interconnect Technologies Manufacturing / Production Technology, Hardware & Services
Optimising AOI performance is now a reality with the highly integrated ADLINK MVP-6200, combined with Intel Arc GPUs.

Read more...
High-mix SMT solution from Panasonic
Techmet Manufacturing / Production Technology, Hardware & Services
Only one machine is required to get production started, and adding more units and/or technologies as demand changes is easy to accomplish.

Read more...