Editor's Choice


Series and parallel battery configurations

21 February 2018 Editor's Choice Power Electronics / Power Management

Batteries achieve the desired operating voltage by connecting several cells in series; each cell adds its voltage potential to arrive at the total terminal voltage. Parallel connection attains higher capacity by adding up the total ampere-hour (Ah).

Some packs may consist of a combination of series and parallel connections. Laptop batteries commonly have four 3,6 V Li-ion cells in series to achieve a nominal voltage 14,4 V, and two in parallel to boost the capacity from 2400 mAh to 4800 mAh. Such a configuration is called 4S2P, meaning four cells in series and two in parallel. Insulating foil between the cells prevents the conductive metallic skin from causing an electrical short.

Most battery chemistries lend themselves to series and parallel connection. It is important to use the same battery type with equal voltage and capacity (Ah) and never to mix different makes and sizes. A weaker cell would cause an imbalance. This is especially critical in a series configuration because a battery is only as strong as the weakest link in the chain. An analogy is a chain in which the links represent the cells of a battery connected in series (Figure 1).

Figure 1: Comparing a battery with a chain.
Figure 1: Comparing a battery with a chain.

A weak cell may not fail immediately but will get exhausted more quickly than the strong ones when on a load. On charge, the low cell fills up before the strong ones because there is less to fill and it remains in over-charge longer than the others. On discharge, the weak cell empties first and gets hammered by the stronger brothers. Cells in multi-packs must be matched, especially when used under heavy loads.

Single-cell applications

The single-cell configuration is the simplest battery pack; the cell does not need matching and the protection circuit on a small Li-ion cell can be kept simple. Typical examples are mobile phones and tablets with one 3,60 V Li-ion cell. Other uses of a single cell are wall clocks, which typically use a 1,5 V alkaline cell, wristwatches and memory backup, most of which are very low-power applications.

Series connection

Portable equipment needing higher voltages use battery packs with two or more cells connected in series. Figure 2 shows a battery pack with four 3,6 V Li-ion cells in series, also known as 4S, to produce 14,4 V nominal. In comparison, a six-cell lead acid string with 2 V/cell will generate 12 V, and four alkaline with 1,5 V/cell will give 6 V.

Figure 2: Series connection of four cells (4S).
Figure 2: Series connection of four cells (4S).

If you need an odd voltage of, say, 9,50 volts, connect five lead acid, eight NiMH or NiCd, or three Li-ion in series. The end battery voltage does not need to be exact as long as it is higher than what the device specifies. A 12 V supply might work in lieu of 9,50 V. Most battery-operated devices can tolerate some over-voltage; the end-of-discharge voltage must be respected, however.

Parallel connection

Figure 3: Parallel connection of four cells (4P).
Figure 3: Parallel connection of four cells (4P).

If higher currents are needed and larger cells are not available or do not fit the design constraint, one or more cells can be connected in parallel. Most battery chemistries allow parallel configurations with little side effect. Figure 3 illustrates four cells connected in parallel in a P4 arrangement. The nominal voltage of the illustrated pack remains at 3,60 V, but the capacity (Ah) and runtime are increased fourfold.

A cell that develops high resistance or opens is less critical in a parallel circuit than in a series configuration, but a failing cell will reduce the total load capability. It’s like an engine only firing on three cylinders instead of on all four. An electrical short, on the other hand, is more serious as the faulty cell drains energy from the other cells, causing a fire hazard. Most so-called electrical shorts are mild and manifest themselves as elevated self-discharge.

A total short can occur through reverse polarisation or dendrite growth. Large packs often include a fuse that disconnects the failing cell from the parallel circuit if it were to short. Figure 4 illustrates a parallel configuration with one faulty cell.

Figure 4: Parallel/connection with one faulty cell.
Figure 4: Parallel/connection with one faulty cell.

A weak cell will not affect the voltage but provide a low runtime due to reduced capacity. A shorted cell could cause excessive heat and become a fire hazard. On larger packs a fuse prevents high current by isolating the cell.

Series/parallel connection

The series/parallel configuration shown in Figure 5 enables design flexibility and achieves the desired voltage and current ratings with a standard cell size. The total power is the product of voltage times current; four 3,6 V (nominal) cells multiplied by 3400 mAh produce 12,24 Wh. Four 18650 energy cells of 3400 mAh each can be connected in series and parallel as shown to get 7,2 V nominal and 12,24 Wh. The slim cell allows flexible pack design but a protection circuit is needed.

Li-ion lends itself well to series/parallel configurations but the cells need monitoring to stay within voltage and current limits. Integrated circuits (ICs) for various cell combinations are available to supervise up to 13 Li-ion cells. Larger packs need custom circuits, and this applies to e-bike batteries, hybrid cars and the Tesla Model 85 that devours over 7000 18650 cells to make up the 90 kWh pack.

Figure 5: Series/ parallel connection of four cells (2S2P).
Figure 5: Series/ parallel connection of four cells (2S2P).

Terminology to describe series and parallel connection

The battery industry specifies the number of cells in series first, followed by the cells placed in parallel. An example is 2S2P. With Li-ion, the parallel strings are always made first; the completed parallel units are then placed in series. Li-ion is a voltage-based system that lends itself well for parallel formation. Combining several cells into a parallel and then adding the units serially reduces complexity in terms of voltage control for pack protection.

Building series strings first and then placing them in in parallel may be more common with NiCd packs to satisfy the chemical shuttle mechanism that balances charge at the top of charge. 2S2P is common; white papers have been issued that refer to 2P2S when a serial string is paralleled.

Safety devices in series and parallel connection

Positive temperature coefficient (PTC) switches and charge interrupt devices (CID) protect the battery from over-current and excessive pressure. While recommended for safety in a smaller 2- or 3-cell pack with serial and parallel configuration, these protection devices are often being omitted in larger multi-cell batteries, such as those for power tools.

The PTC and CID work as expected to switch off the cell on excessive current and internal cell pressure; however the shutdown occurs in cascade format. While some cells may go offline early, the load current causes excess current on the remaining cells. Such an overload condition could lead to a thermal runaway before the remaining safety devices activate.

For more information contact Michael Rogers, Uniross Batteries, +27 (0)11 466 1156, michael.rogers@uniross.co.za, www.uniross.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Service excellence with attention to detail
Deman Manufacturing Editor's Choice
The vision of industry pioneers Hugo de Bruyn and Charles Hauman led to the birth of Deman Manufacturing, a company that sets new standards for innovation and performance within the industry.

Read more...
What is an RF connector?
Spectrum Concepts Editor's Choice Interconnection
If you look across the broader electromagnetic spectrum, the selection of the 3 kHz to 300 GHz frequency range for RF signals is a result of a balance between propagation characteristics, data transmission requirements, regulatory allocations, and the compatibility of electronic components and devices.

Read more...
Make your small asset tracker last longer
Altron Arrow Editor's Choice Power Electronics / Power Management
This design solution reviews a typical asset tracking solution, and shows how the MAX3864x nanopower buck converter family, with its high efficiency and small size, enables longer battery life in small portables.

Read more...
The power of Matter
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Matter offers a reliable, secure, seamless way to interconnect devices from different manufacturers, allowing a new level of interoperability to be enjoyed.

Read more...
Transmitting power to remote places
Altron Arrow Editor's Choice Power Electronics / Power Management
The new single-pair power over Ethernet (SPoE) allows for power and data to be transmitted over longer distances of up to 1000 metres.

Read more...
AI is revolutionising electronics manufacturing
Editor's Choice News
Artificial intelligence is transforming the electronics manufacturing industry by providing new ways to optimise production processes, reduce costs, and improve product quality.

Read more...
Designing and manufacturing robust enclosures for extreme environments
Editor's Choice Manufacturing / Production Technology, Hardware & Services
The lifecycle of robust edge devices starts with design, and all aspects, including electronic components, packaging, shipping, installation, and servicing needs to be considered at the design stage to ensure that an edge device can operate in the environment it is intended for.

Read more...
Reducing solder paste spatter during reflow
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Splash is a problem that solder paste will inevitably encounter during the welding process, and distinguishing between spatter and solder ball is the first step in solving the problem.

Read more...
Products of the year 2023
Editor's Choice News
A summary of products and technologies from 2023 that are currently shaping the electronic engineering industry.

Read more...
The dream of Edge AI
Altron Arrow Editor's Choice AI & ML
AI technology carries a great promise – the idea that machines can make decisions based on the world around them, processing information like a human might. But the promise of AI is currently only being fulfilled by big machines.

Read more...