Manufacturing / Production Technology, Hardware & Services


3D printing and electronics manufacturing

23 October 2019 Manufacturing / Production Technology, Hardware & Services

3D printing has come a long way over the last decade. Even though it remains in its early stages, 3D printing for electronics and electronic manufacturing seems promising.

It could bring huge changes to the industry, especially in terms of adaptive and smart manufacturing practices. Currently the technology is mostly still used as a prototyping tool, but the benefits are quickly outweighing the challenges and many engineers are experimenting in different ways to improve on-demand manufacturing and mass customisation. 3D printing is paving the way in various new areas of electronic fabrication.

Simply put, two materials are used during 3D fabrication: the base material for the product construct and the conductive material for the circuitry. By combining these materials, a fully functioning 3D rendering can be made. This technology holds many advantages for various industries, from electronics manufacturing and aeronautics to the medical sector. For the electronics manufacturing industry this could mean fully functioning components and circuitry that can be made in a single process that requires little or no assembly.

3D printing allows for in-house prototyping which would otherwise usually be outsourced due to the challenges during the development of, for example, the printed circuit board (PCB). This would usually lead to prolonged lead times and additional costs. With 3D printing, procurement costs are lowered and lead times are shortened.

Because lead times are shortened in the prototyping phase, the final product can also reach the end user much faster and this can give your company a competitive advantage. 3D printing also allows for design flexibility and customisation, which means that engineers and developers can design more complex shapes and sizes, which contributes to better overall functionality.

Not only does 3D printing lead to shorter lead times and functional testing but costs savings are also imminent. Shipment and warehousing costs are eliminated, and outsourcing is limited. 3D printed parts are also cheaper and, again, are available in just a few hours.

For us as an electronics manufacturing firm we have already seen improvement in turnaround times and costs. We have applied the technology to the development of test jigs and prototyping, and it has been useful in our production processes as well.

3D printing can be used by any size company. The cost of a single 3D printer allows for new or smaller companies to buy one and bigger companies can use them on a mass scale to reach their goals. Smaller companies can conduct prototyping quickly which gives them a competitive advantage, and large companies can reflect major cost savings over the long run.

Because 3D printing is still in its early stages there are still a few challenges that need to be addressed. For electronic component manufacturing, design software will need to be developed to be able to print the component correctly. Many electronic components that are used in manufacturing are currently in nanometre size, thus suitable materials will need to be identified or developed to be able to print components at the nanoscale.

High-temperature processing will also pose challenges as most metals used for circuitry require post-processing at a minimum of 100°C to become conductive. Adhesion between parts and conductive material will also need to be perfected as repairs later on will be very difficult.

Although these challenges currently keep electronic 3D printing in the infant phase, many studies and experiments are being conducted to overcome these challenges. Many avenues still need to be explored, from taking electronic circuits into the third dimension to conquering new materials and the Internet of thing (IoT). If 3D printing can be done on almost every object, then every object can, for example, become a sensor and be connected.

The opportunities are endless and we are excited to see what the future holds for 3D printing and the electronics manufacturing industry. We are already considering adding another 3D printer to our existing line and we can’t wait to see what developments in this field are going to be revealed. In just a few years it might become one of the great technological advances in the electronics manufacturing industry.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The impact of ML in robotics
Yaskawa Southern Africa Manufacturing / Production Technology, Hardware & Services
The integration of machine learning into robotics has the potential to revolutionise many industries, and particularly the manufacturing sector.

Read more...
ITW EAE wins product introduction award
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
ITW EAE has earned a 2024 New Product Introduction (NPI) Award for Electrovert’s Deep Wave option for wave soldering machines.

Read more...
Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

Read more...
High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Read more...
Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Read more...
Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Read more...
Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Read more...
Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Read more...
Analog Devices and Mouser collaborate on eBook
Manufacturing / Production Technology, Hardware & Services
Mouser has released a new eBook in collaboration with Analog Devices, that offers a detailed analysis of the technologies being used to support sustainable manufacturing practices.

Read more...
Improved precision laser marking
RS South Africa Manufacturing / Production Technology, Hardware & Services
On-the-fly marking at high speeds is only one of the comprehensive features of Panasonic’s new LP-RH laser marker series.

Read more...