Analogue, Mixed Signal, LSI


Small, ultra low-power ADCs

27 June 2007 Analogue, Mixed Signal, LSI

The AS1524 and AS1525 from austriamicrosystems are 12-bit ultra low-power single channel full differential A/D converters, the former having a single full-differential channel and the latter having two single-ended channels. With power consumption of 350 mA (at 3 V) at a sampling rate of 150 ksps and excellent dynamic performance in a small 3 x 3 mm, 8 pin TDFN package, these devices offer an optimal solution for small battery powered devices and portable data acquisition systems such as remote sensors or pen digitisers with difficult space requirements. An automatic shutdown feature places the devices between conversions into sleep mode, reducing the power consumption significantly at lower sampling rates. Consumption drops to 245 mA at 100 ksps, 2,5 mA at 1 ksps and 200 nA during shutdown. SPI, QSPI and a microwire-compatible interface enable high-speed data access while minimising board space. Both devices generate an internal clock and also support an external clock for increased flexibility. They operate between -40°C and


+85°C from a 2,7 to 5,25 V single supply.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Hardware architectural options for artificial intelligence systems
NuVision Electronics Editor's Choice AI & ML
With smart sensors creating data at an ever-increasing rate, it is becoming exponentially more difficult to consume and make sense of the data to extract relevant insight. This is providing the impetus behind the rapidly developing field of artificial intelligence.

Read more...
High-speed PIN diode
Altron Arrow Analogue, Mixed Signal, LSI
Vishay’s new high-speed Silicon PIN diode is able to detect both visible and near infra-red radiation over a wide spectrum range from 350 to 1100 nm.

Read more...
High-speed edge AI evaluation kit
NuVision Electronics DSP, Micros & Memory
The AMD Versal AI Edge VEK280 evaluation kit is now available. Featuring the Versal AI Edge VE2802 device, this kit is optimised for evaluating and developing compute-intensive ML inference applications.

Read more...
Matter 1.2 adds new capabilities
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
This update introduces new device types and expands the reach of Matter into new markets, while also bringing other improvements that enhance interoperability and user experience.

Read more...
Analogue front end for sensor measurements
Electrocomp Analogue, Mixed Signal, LSI
The NJU9103 AFE from Nisshinbo is a tiny analogue front end, with a 16-bit resolution ADC and up to 512 x signal amplification from the programmable gain amplifier.

Read more...
Single-channel software configurable I/O
Altron Arrow Analogue, Mixed Signal, LSI
These use cases of the AD74115H include analogue output and input, digital output and input, resistance temperature detector (RTD), and thermocouple measurement capability.

Read more...
Current-sense amplifier with PWM rejection
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ AD8410A is a high voltage, high bandwidth current-sense amplifier that features an initial gain of 20 V/V and a 2,2 MHz bandwidth.

Read more...
Linux SD-WAN appliance
NuVision Electronics Computer/Embedded Technology
With its powerful quad-core performance and 12 high-speed SERDES lanes, the SoC delivers exceptional processing power for network data management and security.

Read more...
Combining a LPF and ADC driver for a 20 Vp-p signal
Altron Arrow Analogue, Mixed Signal, LSI
A mixed-signal ADC driver circuit’s optimum performance depends on multiple variables: the driver’s settling time, the RC filter’s time constant, driving impedance, and the ADC sampling capacitor’s kickback current, all interact during acquisition time and contribute towards sampling errors.

Read more...
Adaptive system-on-chip
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Built on the proven Versal architecture, AMD’s VP1902 SoC delivers double the capacity and connectivity of the prior generation device.

Read more...