Editor's Choice


What place is there for electronics in horticulture/agriculture?

29 April 2020 Editor's Choice

When I was asked by a colleague what the difference between horticulture and agriculture is recently, I was unable to give an intelligent answer. My guess was that horticulture is growing plants indoors, while agriculture refers more to outdoor farming. So first off, let’s get that out of the way: according to www.differencebetween.net, “horticulture strictly involves plant cultivation only while agriculture deals with cultivation of crops as well as animal farming,” so that’s the definition that will be followed for the purpose of this article.

The next question one might have is, what do these things have to do with electronics – the concepts seem antithetical to the idea of high-precision semiconductors made in clean rooms and sensitive to everything from moisture, to extreme temperatures, to corrosion.

So just what place is there for electronics in horticulture and agriculture, what roles are they serving and what is their uptake in the South African market?

LEDs light the way

One of the most popular types of semiconductor for this purpose is LEDs, as they can be designed to output a light spectrum that is specially tuned to the needs of growing plants, for indoor applications in particular.

They increase the yield of food products to cater for a continuously rising global population, by making the best use of the available land and several countries are developing indoor farming techniques. According to research conducted by P&S; Intelligence, the revenue generated in the global horticulture lighting market is expected to rise from $3,2 billion in 2019 to $20,3 billion by 2030, at a compound annual growth rate (CAGR) of 18,1% between now and then.

Europe was the largest horticulture lighting market during the historical period (2014–2019). This is because it is the largest exporter as well as producer of fruits, flowers and vegetables around the world. During the forecast period, the highest CAGR, of 21,1%, is expected to be experienced in the Asia-Pacific region, owing to its increasing disposable income and population. Further, as a result of the reducing arable area, numerous countries in the region are looking at modern farming techniques, such as indoor horticulture, greenhouse and vertical farming.


Michael Nel.

But what about South Africa, which is blessed with an abundance of sunshine and land area? “My view is that SA is perfectly placed with top-notch electronic design engineers and a good background in agricultural history, which is important when horticulturalists test different plant growing recipes,” says Michael Nel, country manager South Africa for OSRAM Opto Semiconductors. “With LEDs being a semiconductor component, our customers are generally electronic design engineers in the lighting industry that partner with universities and horticulturalists.


Gyula Wendler.

“Yes it is true that we are blessed with an abundance of sunlight in SA yet we see projects starting up locally and abroad. For whatever reason, if it is with or without supplementary lighting, there are still benefits for growers when they are able to control their growing environments.”

Delving into the technical details about what makes LEDs particularly suitable for this market, Nel explains that LED light spectrums are very specific, which allows one to target the absorption wavelengths needed for different plant functions. This allows for control of the light output, spectrum and photoperiod in a single luminaire.

LEDs are also small in form factor, with various secondary optic options available in the market – this combination is favourable for smaller luminaries that still maintain good spectral homogeneity. There is also a significant reduction in directional radiated heat when using LEDs compared to conventional light sources, enabling designers to cater for inter, multilayer or top lighting luminaries that can be used in close proximity to plants.

“Another aspect of LEDs that customers favour above conventional light sources is the failure mode: LEDs lower their light output during their lifetime and light degradation can be calculated and considered early in the design of a lighting solution. Conventional light sources have a total failure at the end of their lifetime and the point of failure cannot be calculated. So there is uncertainty in the estimation when such a light source has to be renewed,” explains Nel.

OSRAM Opto Semiconductors offers a diverse range of horticulture LEDs to meet customer specific requirements, ranging from the shorter wavelengths in deep blue to the longer wavelengths in far red. “We have compatibility in our professional range with Oslon and QsconiqP2226 parts, with Duris S5 covering the commercial range. We also have various compatible white LEDs in these ranges that can be incorporated for better work environments,” Nel says.

The role of the IoT

Altron Arrow mainly supplies components to the electronics industry and a few of its customer are designing and manufacturing local units for this market, according to engineering manager, Gyula Wendler. It also supplies Libelium and Monnit as more completed plug-and-play solutions which are aimed at the smart farming vertical market.

Libelium manufactures hardware and a complete software development kit for wireless sensor networks. In its SmartFarming solution, it has 19 high-performance sensors for the most exigent field applications such as vineyards, fruit orchards and greenhouse cultivations, among others.

Monnit is a pure-play wireless sensor-based solution provider for the Internet of Things (IoT). Monnit’s 70+ sensor types can keep an eye on operations, crops and livestock easily and economically as all its sensors are interoperable and have long battery life.

For applications like the Libelium products that sit out in a field and measure things like moisture and pH levels, two of the most important technical features are battery life and IoT communication. “One of the key features is to ideally not have wires to sensors. This means wireless sensors are in bigger demand. This then brings battery life into the equation as high on the priority list, followed then by the range and reliability of the wireless sensors. The actual protocol seems less important as long as it’s reliable. A lot of the sensors are also not rugged enough for the farming environment, so this is an important consideration too. Of course cost is always an important factor,” Wendler says.

He says the local market has been slow on taking up these technologies however. “There have been quite a few enquires for projects in this environment and quite a few proofs of concept, but not many go into full implementation. The cost of the sensor equipment is often one of the hurdles, especially for imported products, so locally produced solutions should have a better success rate. Also, the security of the sensor is often an issue as vandalism seems to be an issue in many of the areas.

“Smart farming using IoT is still very much in its infancy locally. However, with a population that is growing and resources being limited, smart, efficient use of the water, land and other resources will be needed so IoT in this space will become increasingly important. I believe there is huge potential for locally developed products.”

For more information contact

Gyula Wendler, Altron Arrow, +27 11 923 9600, [email protected], www.altronarrow.com;

Michael Nel, OSRAM Opto Semiconductors, +27 10 221 4000, [email protected], www.osram-os.com


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Microchip enhances TrustMANAGER platform
Altron Arrow DSP, Micros & Memory
Firmware over-the-air updates and remote cryptographic key management provide scalable solutions for addressing IoT security challenges.

Read more...
Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...
Wide input voltage buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 from Analog Devices is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range of between 2,5 and 22 V.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved