Telecoms, Datacoms, Wireless, IoT


Using radio signals to image hidden objects

28 September 2022 Telecoms, Datacoms, Wireless, IoT

Researchers at the National Institute of Standards and Technology (NIST), together with Wavsens LLC, have developed a method for using radio signals to create real-time images and videos of hidden and moving objects. One application could be to help firefighters find escape routes for victims inside buildings filled with fire and smoke. The technique could also help track hypersonic objects such as missiles and space debris.

The new method could provide critical information to help reduce deaths and injuries. “Our system allows real-time imaging around corners and through walls, and tracking of fast-moving objects such as millimetre-sized space debris flying at 10 kilometres per second, all from standoff distances,” said physicist Fabio da Silva, who led the development of the system while working at NIST. “Because we use radio signals, they go through almost everything, like concrete, drywall, wood and glass,” da Silva added. “It’s pretty cool, because not only can we look behind walls, but it takes only a few microseconds of data to make an image frame. The sampling happens at the speed of light; as fast as physically possible.”

The NIST imaging method is a variation on radar, which sends an electromagnetic pulse, waits for the reflections, and measures the round-trip time to determine distance to a target. Multisite radar usually has one transmitter and several receivers that receive echoes and triangulate them to locate an object.

“We exploited the multisite radar concept but in our case use lots of transmitters and one receiver,” da Silva said. “That way, we are able to locate and image anything that reflects anywhere in space.”

The NIST team demonstrated the technique in an anechoic (non-echoing) chamber, making images of a 3D scene involving a person moving behind drywall. The transmitter power was equivalent to 12 cell phones sending signals simultaneously to create images of the target. Da Silva said the current system has a potential range of up to several kilometres. With some improvements, the range could be much further, limited only by transmitter power and receiver sensitivity, he said.

The transmitting antennas operated at frequencies from 200 MHz to 10 GHz, roughly the upper half of the radio spectrum, which includes microwaves. The receiver consisted of two antennas connected to a signal digitiser. The digitised data were transferred to a laptop computer and uploaded to the graphics processing unit to reconstruct the images.

The NIST team used the method to reconstruct a scene with 1,5 billion samples per second, a corresponding image frame rate of 366 fps. With 12 antennas, the NIST system generated 4096-pixel images, with a resolution of about 10 centimetres across a 10-metre scene. This image resolution can be useful when sensitivity or privacy is a concern. However, the resolution could be improved by upgrading the system using existing technology.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compact, durable and wideband wireless performance
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Taoglas Metal Stamped MPA Series of antennas is engineered to meet the growing demands of modern wireless devices that require high performance in increasingly compact form factors.

Read more...
Ultra-low-power SDR tuner
Telecoms, Datacoms, Wireless, IoT
CML Micro has announced the launch of the CMX918, an advanced, ultra-low-power, multi-mode Software-Defined Radio (SDR) tuner designed to significantly extend battery life in portable, embedded, and always-on radio applications.

Read more...
Multiprotocol wireless System-on-Chip
Telecoms, Datacoms, Wireless, IoT
The nRF54LM20B from Nordic Semiconductor is a multiprotocol wireless SoC designed for demanding designs in Bluetooth devices used in smart homes and industrial applications.

Read more...
What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Quectel introduces tri-band MCU Wi-Fi 6E module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Supporting operation across the 2,4 GHz, 5 GHz, and 6 GHz bands, the FGMC63N delivers true tri-band capability in a compact, integrated design.

Read more...
u-blox redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Channel sounding on Bluetooth module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
The latest Bluetooth module from Panasonic Industry provides excellent performance and minimal power consumption.

Read more...
Multiprotocol SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding wireless Bluetooth designs.

Read more...
TDK launches DRIVE
Avnet Abacus Telecoms, Datacoms, Wireless, IoT
TDK launches DRIVE, a platform designed to unlock control-grade accuracy for advanced vehicle platforms without perception sensors.

Read more...
High-performance Wi-Fi and Bluetooth module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The FCU741R is a high-performance Wi-Fi 4 module launched by Quectel, supporting 2,4 and 5 GHz frequencies which can be used for WLAN connection.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved