Telecoms, Datacoms, Wireless, IoT


Using radio signals to image hidden objects

28 September 2022 Telecoms, Datacoms, Wireless, IoT

Researchers at the National Institute of Standards and Technology (NIST), together with Wavsens LLC, have developed a method for using radio signals to create real-time images and videos of hidden and moving objects. One application could be to help firefighters find escape routes for victims inside buildings filled with fire and smoke. The technique could also help track hypersonic objects such as missiles and space debris.

The new method could provide critical information to help reduce deaths and injuries. “Our system allows real-time imaging around corners and through walls, and tracking of fast-moving objects such as millimetre-sized space debris flying at 10 kilometres per second, all from standoff distances,” said physicist Fabio da Silva, who led the development of the system while working at NIST. “Because we use radio signals, they go through almost everything, like concrete, drywall, wood and glass,” da Silva added. “It’s pretty cool, because not only can we look behind walls, but it takes only a few microseconds of data to make an image frame. The sampling happens at the speed of light; as fast as physically possible.”

The NIST imaging method is a variation on radar, which sends an electromagnetic pulse, waits for the reflections, and measures the round-trip time to determine distance to a target. Multisite radar usually has one transmitter and several receivers that receive echoes and triangulate them to locate an object.

“We exploited the multisite radar concept but in our case use lots of transmitters and one receiver,” da Silva said. “That way, we are able to locate and image anything that reflects anywhere in space.”

The NIST team demonstrated the technique in an anechoic (non-echoing) chamber, making images of a 3D scene involving a person moving behind drywall. The transmitter power was equivalent to 12 cell phones sending signals simultaneously to create images of the target. Da Silva said the current system has a potential range of up to several kilometres. With some improvements, the range could be much further, limited only by transmitter power and receiver sensitivity, he said.

The transmitting antennas operated at frequencies from 200 MHz to 10 GHz, roughly the upper half of the radio spectrum, which includes microwaves. The receiver consisted of two antennas connected to a signal digitiser. The digitised data were transferred to a laptop computer and uploaded to the graphics processing unit to reconstruct the images.

The NIST team used the method to reconstruct a scene with 1,5 billion samples per second, a corresponding image frame rate of 366 fps. With 12 antennas, the NIST system generated 4096-pixel images, with a resolution of about 10 centimetres across a 10-metre scene. This image resolution can be useful when sensitivity or privacy is a concern. However, the resolution could be improved by upgrading the system using existing technology.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

TDK launches DRIVE
Avnet Abacus Telecoms, Datacoms, Wireless, IoT
TDK launches DRIVE, a platform designed to unlock control-grade accuracy for advanced vehicle platforms without perception sensors.

Read more...
High-performance Wi-Fi and Bluetooth module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The FCU741R is a high-performance Wi-Fi 4 module launched by Quectel, supporting 2,4 and 5 GHz frequencies which can be used for WLAN connection.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 from Analog Devices is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
GaN power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed on a 0,15 µm GaN-on-SiC process, Macom’s 35 W high-power amplifier delivers a perfect blend of efficiency and resilience.

Read more...
Ceramic substrate loop antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The DLA.01 DECT ceramic loop antenna from Taoglas is a miniature edge mounted antenna designed for compact devices with minimal space availability.

Read more...
High-performance MCU with mesh communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The KGM133S is a high-performance by Quectel that boasts an ARM Cortex-M33 processor with a frequency of up to 78 MHz, and Matter, Thread, Zigbee, BLE 6.0, and BLE mesh.

Read more...
Mercury Systems’ AM6000 Series
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The AM6000 series of MMIC RF switches from Mercury Systems are characterised by their wide operating bandwidth, high linearity, and compact size.

Read more...
Power the always-on edge AI
Future Electronics Telecoms, Datacoms, Wireless, IoT
Ambiq Micro has announced the Apollo510 Lite System-on-Chip Series, the newest member of its Apollo5 family designed to meet the growing demand for always-on intelligence at the edge.

Read more...
NB IoT development board
Dizzy Enterprises Telecoms, Datacoms, Wireless, IoT
MIKROE’s NB IoT 6 Click is a compact add-on development board that delivers reliable narrowband IoT connectivity for embedded applications.

Read more...
Shock-resistant connector series
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
ITT Cannon’s CA Bayonet connectors are a versatile and extremely reliable series with a proven ‘reverse bayonet’ coupling design that offers exceptional vibration protection.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved