Analogue, Mixed Signal, LSI


How sensor fusion is driving vehicle autonomy forward

26 October 2022 Analogue, Mixed Signal, LSI

From reading road signs to keeping you inside lane markers, artificial-intelligence-assisted cameras are already making our vehicles smarter and safer. But what happens when the fog rolls in and your camera’s vision is as compromised as yours?

“A camera might be great for object recognition, but it’s not so good in bad weather or at night,” said Miro Adzan, general manager of advanced driver assistance systems (ADAS) at TI. “However, radar will continue to work in rain, snow or mist. Driver assistance systems need to incorporate a range of different sensors so the vehicle can take full advantage of the benefits of these different technologies.”

Using the strengths of different types of sensors is not just a matter of switching between them for different conditions or applications. Even in clear weather, a camera will be stronger for object details, but radar will measure an object’s distance more accurately.

As these systems extend to critical and time-sensitive applications such as emergency braking, automatic parking, front-collision warning and avoidance, and blind spot detection, design engineers will need to fuse these different information sources into a single picture to deliver reliable real-time decisions.

“For automatic parking, you need to combine data from cameras, radar and sometimes ultrasound to give the vehicle an accurate sense of what’s going on around you,” said Curt Moore, general manager for Jacinto processors at TI. “None of these sensors would be accurate enough on their own, but by combining them, you can get a much more accurate picture of the space around you. This allows you to park in much tighter spaces without the risk of causing damage.”

Advanced safety systems are no longer reserved only for high-end automobiles. Nearly 93% of vehicles produced in the US come with at least one ADAS feature, and automatic emergency braking is set to become standard across 99% of new cars in the United States by September.

The shift is a result of the decreasing cost and size of sensors, such as TI mmWave radar sensors which integrate an entire radar system into a chip the size of a coin.

“Ten years ago, radar was predominantly used in military applications because of size, cost and complexity,” Adzan said. “But today, radar is on the verge of becoming a standard component in the car.”

While the proliferation of affordable sensors opens up new applications, it also creates new challenges for ADAS engineers who need to design systems that bring together all the data streams and process them efficiently, while meeting tight affordability and power constraints.

In a single-sensor ADAS system, pre-processing data for object detection takes place close to the sensor in order to use that information immediately. But sensor fusion requires that raw, high-resolution data be instantly transmitted to a central unit for processing to form a single, accurate model of the environment that will help the vehicle avoid a collision.

“With all the data coming in from these sensor nodes, the challenge is making sure all of it is synchronised so the vehicle can understand what’s happening around you and make critical decisions,” said Heather Babcock, general manager for FPD-Link products at TI. “In order to transmit synchronised data in real time, it’s important to have high-bandwidth, uncompressed transmission capability because compressing data introduces latencies.”

The physical constraints of an automobile place tight limits on the size and weight of batteries and cooling infrastructure, so ADAS engineers need processors specifically designed to perform these tasks as efficiently as possible.

The Jacinto processors combine dedicated DSP and matrix multiplication cores that operate with the lowest available power, even at temperatures of up to 125°C.

“There are tremendous advantages in integrating the DSP and the processor into one system on a chip,” Moore said. “Otherwise, each will need its own memory and power supply, driving up the system cost. The other advantage is the reduction in latency gained by integrating these operations into one chip.”

In addition to power-efficient processors, TI’s automotive-qualified power management ICs with functional safety features for sensor fusion, front cameras and domain controllers improve overall power efficiency and functionality within the vehicle.

Beyond the individual components, TI’s entire ecosystem of ADAS products is created for seamless compatibility, allowing car manufacturers to select from a holistic portfolio that can be scaled to the demands and price points of their vehicles.

“We have all the pieces of the ADAS puzzle designed in a way that keeps the various challenges of the vehicle in mind,” Adzan said. “That makes the system design easier for our customers.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
High-reliability isolation amplifiers
EBV Electrolink Analogue, Mixed Signal, LSI
The VIA series of isolation amplifiers from Vishay are designed to deliver exceptional thermal stability and precise measurement capabilities.

Read more...
Mibbo QT2C Series signal isolators
Conical Technologies Analogue, Mixed Signal, LSI
The Mibbo QT2C Series isolators support a rich combination of input and output signals, working with either current loops or voltage levels.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Microchip enhances TrustMANAGER platform
Altron Arrow DSP, Micros & Memory
Firmware over-the-air updates and remote cryptographic key management provide scalable solutions for addressing IoT security challenges.

Read more...
Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...
Wide input voltage buck-boost converter
Altron Arrow Power Electronics / Power Management
The MAX77859 from Analog Devices is a high-efficiency, high-performance buck-boost converter targeted for systems requiring a wide input voltage range of between 2,5 and 22 V.

Read more...
IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...