Telecoms, Datacoms, Wireless, IoT


LPWA technology unleashes Smart City innovation

11 October 2017 Telecoms, Datacoms, Wireless, IoT

The Internet of Things (IoT) is powering a new generation of breakthroughs that enhance public safety and improve quality of life.

Imagine a car accident on a city street at night. The accident is captured by connected video cameras that automatically trigger an alarm. Public safety services are instantly notified. The street lights grow brighter so responders can work more effectively. And connected transit and traffic light systems automatically divert traffic.

All of these applications, and many others, are possible in connected Smart Cities. But today, even when cities connect individual applications, they mostly operate in silos. They’re based on technologies from different vendors, none of which talk to each other, making them more complex and expensive. Even worse, cities can’t tap the full potential they could realise if everything was linked within a single system.

Now, 3GPP low-power wide-area (LPWA) network technologies are breaking down Smart City silos. Designed specifically for low-bandwidth, low-power IoT applications, they’re making Smart City innovation a lot simpler, less expensive and more exciting.

Unlocking IoT potential with standardised LPWA

3GPP LPWA technologies combine the right technology, at the right cost, with global coverage and scalability, and interoperability across different devices and applications. And they overcome the major barriers that have often held back IoT applications:

Cost: Many IoT applications transmit only small amounts of information. Using 3G or 4G cellular technologies designed for high-bandwidth, low-latency mobile computing means spending extra for capacity and capabilities that many Smart City applications don’t need. LPWA technologies are designed specifically for low-bandwidth IoT applications, so cost less than full-feature cellular modules.

The biggest savings, however, come from economies of scale. Most 3GPP LPWA technologies can operate over existing cellular infrastructure and are compatible with hundreds of mobile networks and thousands of equipment suppliers worldwide. That means they are more likely to be broadly adopted across the industry, making every element of IoT solutions less expensive.

Power: In some Smart City use cases, there is no readily accessible external power source, so IoT solutions have to run on battery power. LPWA technologies employ new techniques to consume as little power as possible, and can operate in the field for 10 to 15 years with no onsite human intervention.

Coverage: Some Smart City applications operate in poor signal areas, such as basements or remote sites. Assuring a strong connection can be a problem – especially when relying on proprietary wireless technologies that aren’t densely deployed. And the poorer the coverage, the worse the battery life. Because they’re based on 3GPP cellular standards, 3GPP LPWA technologies can get a connection almost anywhere in the world, with much improved RF link budget compared to legacy 2G and 3G technologies.

Longevity: Some Smart City solutions need to operate in the field for years, even decades, without needing to be touched. Having to replace radios in thousands of deployed assets because they’re no longer supported would be a monumental expense. Cities can rely on mobile network operators supporting 3GPP LPWA technologies far into the future.

Even when carriers adopt 3GPP 5G networks, they will be backwards-compatible with current 3GPP technologies – including 3GPP LPWA. The latest 3GPP standards (release 13) also mitigate congestion, so operators will be able to support millions of new IoT devices without negatively affecting coverage or power budget.

Standards make a difference

A number of proprietary LPWA technologies have emerged in recent years, such as LoRa, SigFox and Ingenue, but governments and OEMs have been reluctant to invest heavily in them. The biggest reason is a lack of global scale or backing from a broad ecosystem.

These proprietary solutions can provide solutions for some types of deployments, but they’re limited to a much smaller group of vendors and markets that support them, so they can’t benefit from economies of scale that drive the most significant cost savings. In addition, for Smart City applications that need to operate in the field for up to 20 years, basing a large deployment on technology backed by such a small ecosystem is a risky long-term investment.

3GPP LPWA technologies are based on standards already used in more than 450 networks worldwide. 3GPP also makes Smart City applications easier for city governments. 3GPP cellular coverage is basically ubiquitous, so devices are simple and inexpensive to install. And cities can use the same carrier and platform to connect all of their Smart City applications.

LPWA options

There are three options for 3GPP LPWA technologies:

Long Term Evolution-Machine Communications (LTE-M or CAT-M1) employs new mechanisms to reduce device complexity, improve power consumption, and expand coverage and penetration. It can be deployed as a software upgrade to existing LTE networks, so mobile operators need no new network hardware or spectrum to begin servicing 3GPP LPWA deployments. It enables all the ‘must have’ capabilities for successful IoT deployments, including IP connectivity, over-the-air (OTA) device management, mobility, low latency and more.

Narrow Band IoT (NB-IOT or CAT-NB1) is also defined under the 3GPP LTE standard, and can also be deployed on existing LTE networks with a software upgrade. It features lower data rates than CAT-M1 (65 Kbps versus 357 Kbps) and narrower channel bands.

Extended Coverage GSM (EC-GSM-IOT or EC-GSM) provides a 3GPP LPWA standard for communicating at up to 70 Kbps over re-framed 2G GSM cellular frequency bands.

With its design for extremely low-bandwidth communication, CAT-NB1 can provide a cost-effective option for applications limited to collecting basic sensor data, such as connected garbage bins. For most Smart City applications that need OTA device management, IP-based communication, strong security and more intelligence at the edge, CAT-M1 is the better choice.

Some Smart Cities may use applications standardised on multiple LPWA technologies – for example, smart transit systems on CAT-M1 and garbage bin sensors using CAT-NB1. Since both of these technologies are based on 3GPP LTE, cities can still use a single wireless carrier, with unified cellular management and dense coverage everywhere.

By standardising on 3GPP, utilities and OEMs can take advantage of a massive ecosystem encompassing every major mobile carrier, network infrastructure vendor, chipset manufacturer and cellular module vendor. That translates to broader coverage, global scalability, simpler deployments and lower costs. Using a standardised LPWA technology also means more interoperability, so cities can avoid getting locked into a single vendor.

Sierra Wireless has been deeply involved in specifications and standards work for emerging LPWA technologies. The company works closely with ecosystem partners and mobile operators worldwide to accelerate the rollout of 3GPP LPWA technology in global markets, and can provide the design assistance, technology expertise and technology portfolio to help customers capitalise on the Smart City IoT opportunity.

For more information contact Gyula Wendler, Arrow Altech Distribution, +27 (0)11 923 9709, gwendler@arrow.altech.co.za, www.arrow.altech.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Low power BLE module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT220X from HOPERF is a Bluetooth Low Energy data transmission module, based on a BLE 5.2 SoC chip with an integrated ARM Cortex-M33 processor.

Read more...
Filters that redefine RF performance
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
For organisations designing 5G infrastructure, radar systems, satellite links, or broadband broadcast/transmission gear, Temwell cavity filters offer a solid combination of performance, customisation, and support.

Read more...
Zero-biased Schottky diode detector
Telecoms, Datacoms, Wireless, IoT
Designed to eliminate the need for external biasing, the ZSD3001 from Advanced Microwave streamlines system integration and delivers exceptional sensitivity, broad frequency coverage, and low distortion.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved