Telecoms, Datacoms, Wireless, IoT


Stellenbosch student presents paper on SA satellite at conference

4 October 2006 Telecoms, Datacoms, Wireless, IoT

A post-graduate student at the University of Stellenbosch represented South Africa at the Utah Small Satellite Conference that was held in the USA in August.

Kgabo Mathapo presented a paper on South Africa's second satellite, recently named 'Sumbandila' - a Venda word that means 'showing the way' or 'Pathfinder'. Mathapo's paper deals with the software defined radio automatic identification receiver (AIS), one of the several experimental payloads on the satellite.

Kgabo Mathapo presented a paper on Sumbandila, SA’s second satellite
Kgabo Mathapo presented a paper on Sumbandila, SA’s second satellite

The satellite is being built by SunSpace, a company that has its origins from the Sunsat satellite programme of the University. Sunsat was developed completely by a local team of engineers and launched in 1999 by NASA. This team forms the core of SunSpace today.

The Small Satellite Conference's theme this year was: The first 20 years, where we have been - where we are going. Sunspace considered it important for South Africa to be presenting a paper and supported Mathapo's participation.

Software defined radio (SDR) is a technology that is currently being researched at the University of Stellenbosch because of its potential to realise reconfigurable radio systems and networks that use the same hardware for different applications. The primary purpose of the SDR AIS experimental payload on Sumbandila is to demonstrate the monitoring of marine traffic along the SA coast. The secondary purpose is to carry out scientific experiments that will demonstrate the possibility of reconfiguring radio systems on a satellite through software updates and to serve as proof of concept of SDR for satellite communication systems.

Sumbandila (ZA002) is South Africa's second satellite that will be launched in a low earth orbit and has in addition to experimental payloads, an on-board multisensor imager will be used to take high resolution images of the earth. The satellite will be launched into a 500 km sun-synchronous orbit with a local time (at the equator) of 10 am and 10 pm.

The SDR project will use a space-qualified VHF/UHF transponder and on-board processing unit, developed for small satellites by SunSpace. The SDR architecture itself allows for the development of a library of components that are used to build a radio system.

Mathapo is studying in the Department of Signal Processing and Telecommunications Research Group and is working on the SDR project as his thesis for his Masters Degree in Electronic Engineering which he expects to complete this year. His paper goes into detail about GMSK modulation, demodulation and filtering techniques.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Two-stage linear RF power amplifier
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX90A006 from CML Micro is a two-stage linear RF power amplifier delivering +33 dBm of output power over the frequency range of 860 to 930 MHz.

Read more...
Multi-band satellite modules
RF Design Telecoms, Datacoms, Wireless, IoT
The UBX-R52/S52 Series from u-blox are Multi-band LTE-M/NB-IoT/Satellite Modules that operate in 3GPP cellular bands from 450 MHz to 2,46 GHz and 1,5 to 1,7 GHz for satellite connectivity.

Read more...
Three new short-range radio modules
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The modules are the FC30R, a cost-effective, industrial-grade Wi-Fi module; the FCU743R, featuring Wi-Fi 4 and Bluetooth 5.2 capabilities; and the FCM740D, an MCU with Wi-Fi 4 and Bluetooth 5.2.

Read more...
Open-source flexibility for IoT gateway
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The SRG-CM4 brings all the open-source flexibility of the Raspberry Pi OS and ecosystem to AAEON’s signature rugged, durable gateway design to create a truly industry-ready, modular system.

Read more...
5G RedCap and its current environment
RF Design Telecoms, Datacoms, Wireless, IoT
5G RedCap is expected to be a key driver of the transition from 4G to 5G technology for many IoT applications.

Read more...
Quectel adds to its portfolio
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The modules are the FC30R, a cost-effective, industrial-grade Wi-Fi module; the FCU743R, featuring Wi-Fi 4 and Bluetooth 5.2 capabilities; and the FCM740D, an MCU with Wi-Fi 4 and Bluetooth 5.2.

Read more...
Dedicated NETGEAR switches for AV-over-IP applications
Telecoms, Datacoms, Wireless, IoT
The NETGEAR range of Pro AV switches, available from Duxbury Networking, provides professional audio/video (AV) users with high quality, low-latency video and audio distribution over an IP network.

Read more...
Matter-over-Thread smart locks
RS South Africa Telecoms, Datacoms, Wireless, IoT
Austrian smart lock manufacturer Nuki is using Silicon Labs solutions in the fourth-generation Nuki Smart Lock, the world’s first smart lock with native Matter-over-Thread support.

Read more...
Harnessing IoT for the future of agriculture
Telecoms, Datacoms, Wireless, IoT
As the agricultural landscape becomes more complex, there is a need for adopting scalable and adaptable connectivity solutions.

Read more...
Wireless LTE connectivity
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Links Field Network’s focus is international roaming data, and by leveraging their holding company’s international footprint and pricing structure, Links Field Networks South Africa works closely with their local shareholder to offer fully connected devices, regardless of where it is to be used globally.

Read more...