News


Graphene's electronic behaviour probed

10 November 2010 News

Using a one-of-a-kind instrument designed and built at the National Institute of Standards and Technology (NIST) in the US, an international team of researchers has unveiled a quartet of graphene’s electron states and discovered that electrons in graphene can split up into an unexpected and tantalising set of energy levels when exposed to extremely low temperatures and extremely high magnetic fields.

Published in the 9 September 2010 issue of Nature, this new research raises several intriguing questions about the fundamental physics of this exciting material and reveals new effects that may make graphene even more powerful than previously expected for practical electronic applications.

Graphene is one of the simplest materials – a single-atom-thick sheet of carbon atoms arranged in a honeycomb-like lattice – yet it has many remarkable and surprisingly complex properties. Measuring and understanding how electrons carry current through the sheet is important to realising its technological promise in wide-ranging applications, including high-speed electronics and sensors. For example, the electrons in graphene act as if they have no mass and are almost 100 times more mobile than in silicon. Moreover, the speed with which electrons move through graphene is not related to their energy, unlike materials such as silicon where more voltage must be applied to increase their speed, which creates heat that is detrimental to most applications.

NIST recently constructed the world’s most powerful and stable scanning probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum and high magnetic field. In the first measurements made with this instrument, the team has used its power to resolve the finest differences in the electron energies in graphene, atom by atom.

Because of the geometry and electromagnetic properties of graphene’s structure, an electron in any given energy level populates four possible sublevels, called a ‘quartet.’ Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences. The experiment, according to the research team, revealed unexpected complex quantum behaviour of the electrons in a high magnetic field at extremely low temperatures. The electrons apparently interact strongly with one another in ways that affect their energy levels.

This artist’s rendition illustrates the electron energy levels in graphene as revealed by a unique NIST instrument. Because of graphene’s properties, an electron in any given energy level (the wide, purple band) comprises four quantum states (the four rings), called a ‘quartet.’ This quartet of levels split into different energies when immersed in a magnetic field. The two smaller bands on the outermost ring represent the further splitting of a graphene electronic state
This artist’s rendition illustrates the electron energy levels in graphene as revealed by a unique NIST instrument. Because of graphene’s properties, an electron in any given energy level (the wide, purple band) comprises four quantum states (the four rings), called a ‘quartet.’ This quartet of levels split into different energies when immersed in a magnetic field. The two smaller bands on the outermost ring represent the further splitting of a graphene electronic state

One possible explanation for this behaviour, the team says, is that the electrons have formed a ‘condensate’ in which they cease moving independently of one another and act as a single coordinated unit. If so, the work could point the way to the creation of smaller, highly energy efficient electronic devices based upon graphene which produce very little heat.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...
Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...