Programmable Logic


Flash-based FPGA lets race engine controller lead the pack

22 September 2004 Programmable Logic Products & Solutions Smart Home Automation

Ref: z2717152m

In the world of motor racing, speed is everything and not just on the track. In many classes, the electronic control unit (ECU) that controls the engine has become as critical a component as the engine, the aerodynamics of the car and its driver. The ability to eke out as much performance as possible from the engine under the extreme conditions that are found on the racetrack is critical to a team's ability to stay ahead of the competition. As a result, teams need to be able to tune how the ECU behaves, and do so quickly.

At specialist ECU design company, Life Racing, systems designer Mark Colby understands just how quickly racing teams need the software in an ECU to be updated. He does not think in terms of having months or even weeks to write a new piece of software for an ECU, but days. "In motor sport you are writing software all the time. We average one software release to the car every week. Whenever the racing team thinks up a new control possibility, they will be on the phone to us," he said. "We have had just two hours to turn around a new control strategy."

The need to be able to produce software to such tight deadlines has driven not only how Colby and his small team write software but to how the hardware it runs on is put together. The hardware architecture that Life Racing developed is tuned for rapid software development. At its heart is a high-performance microprocessor and a field-programmable gate array (FPGA) that offloads tasks from the host processor that would be more complex to implement in software or slow down the core algorithms too much.

In a space of just under two years, Life Racing has gone from being a new venture for a sports-car engine manufacturer, to having design-ins in several high-profile racing engines. Life Racing was formed in April 2002 as an offshoot of the specialist engine builder, Advanced Engine Research (AER). Mike Lancaster, the managing director of AER decided it would be useful to be able to supply ECUs as well as the engine themselves. That combination came to fruition with a clean-sheet engine design for MG's Le Mans car. Life Racing's ECU has also been designed into the engines used in the cars that race in the Superfund World Series Lights championship.

For the ECU board, Life Racing opted to use Actel's ProASIC APA450 non-volatile FPGA to sit alongside the host processor, a PowerPC 565 made by Motorola. Colby was no stranger to working with Actel devices based on antifuse technology in previous projects. He chose them over volatile SRAM-based parts because the ECU designs needed an FPGA that would work as soon as power is applied to the system. The ECU cannot wait for a configuration file to be downloaded from a serial EPROM into an SRAM-based part. "The antifuse parts were also very simple in terms of board designs," said Colby.

For the new generation of ECUs, Colby needed a design where the FPGA could be reprogrammed. But he still wanted the FPGA to be live at power-on. So, the ProASIC was selected. "With flash, we still do not have to worry about boot time," he explained.

The move to the ProASIC FPGA has proved important for a number of reasons. It makes the design more flexible and it greatly reduces the number of spare boards the company has to carry for each team. Crashes and other calamities on the track can mean a team calling up for a replacement for a race the next day. "With the flash-based FPGA, the board can be made blank and programmed as necessary," said Colby. "We have the ability to ship product that is working but, in a sense, not complete. We manufacture in low volumes and so we need to pay attention to lead times."

Another reason for using a reprogrammable FPGA is that it allows more flexibility over which parts of the control run in software and which can be implemented as hardware. In the early days of motor racing with ECUs, the boards were based on designs used in road vehicles. Over time the paths taken by the racing community and the road-car builders have diverged.

Colby said the ECU in a modern car will make extensive use of engine models and use advanced processing techniques to determine how the engine is performing and avoid conditions such as knocking. In the race environment, knock detection can be as important but is handled in a different way. With a road car, it can take years to optimise the theoretical models and control algorithms for the ECU. There is no time to do that for a racing car so the engineers rely on empirical models of engine behaviour based on direct experience of how it performs on the track.

Without the use of an advanced theoretical model, latency is a much bigger issue for the racing ECU than for its road-car cousin. That means performing a lot of measurements, such as crankshaft position, in a short space of time and reacting to changes quickly. The more frequently a reading can be updated, the better the ECU can gauge how conditions are changing. For example, when pulling out of a corner, engine conditions will change rapidly. Reacting to this can mean the difference between staying in front or dropping behind a competitor with better acceleration.

Says Colby: "With a processor you may only have time to look at a signal once in a given period. The FPGA can look at the signals more frequently and make a more accurate prediction. That way, you can better handle acceleration."

The FPGA can perform pre-processing on the incoming signals, such as determining crankshaft position by letting the FPGA deal with the pattern of signals produced by the encoder. As the FPGA handles a lot of the sensor pre-processing, "there is very little to change in the software for each different engine", said Colby, which helps greatly in getting an ECU ready for each new engine.

The need to keep software simple has extended to the way that the company deals with the highly integrated host processor that is on the ECU board. That paid off in terms of getting the design up and running quickly. "With this ECU, we had it running an engine within three to four weeks of getting the board from the manufacturer," said Colby.

He said that decisions on interrupt structures and how peripherals are controlled were all informed by their effects on software complexity. For example, Colby said that peripherals will align to different clock edges used by the queued serial peripheral interface (QSPI) that features on the PowerPC embedded processor. "We would try to organise those transfers to be on different buses," said Colby, as that would simplify the programming model.

The focus on rapid software development is paying off for Life Racing, and its customers, in the highly competitive world of motor racing. It shows how critical choices, such as which FPGA to use, can pay dividends in implementing a complete system.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Aligning clocks over large distances
ASIC Design Services Test & Measurement
SkyWire technology from Microchip makes it easier to align and compare clocks within nanoseconds across geographic locations.

Read more...
High-accuracy time transfer solution
ASIC Design Services Telecoms, Datacoms, Wireless, IoT
Microchip Technology recently announced the release of the TimeProvider 4500 v3 grandmaster clock (TP4500) designed to deliver sub-nanosecond accuracy for time distribution across 800 km long-haul optical transmission.

Read more...
New RT PolarFire device qualifications
ASIC Design Services DSP, Micros & Memory
Microchip expands space-qualified FPGA portfolio with new RT PolarFire device qualifications and SoC availability.

Read more...
Siemens’ software selected for verification and validation
ASIC Design Services Design Automation
Siemens Digital Industries Software recently announced that Veloce Strato CS and Veloce proFPGA CS have been deployed at Arm, a longtime user of Veloce, as part of its design flow for Arm Neoverse Compute Subsystems.

Read more...
Recording 40 high-resolution channels
Dallmeier Electronic Southern Africa Surveillance Products & Solutions
With the new MK4 revision of the DMS 2400, Dallmeier introduces a more powerful version of its video appliance, enabling the recording of up to 40 high-resolution video streams, and offering significantly increased capacity.

Read more...
Short-range indoor LiDAR sensor
OPTEX Perimeter Security, Alarms & Intruder Detection Infrastructure Products & Solutions
The REDSCAN Lite RLS-1010L has been developed to provide comprehensive coverage and protect high-risk security zones and vulnerable, narrow indoor spaces that are difficult to protect with traditional sensors.

Read more...
Is your entrance security secure?
SMART Security Solutions Centurion Systems Technews Publishing News & Events Access Control & Identity Management Smart Home Automation
While Centurion Systems may be known as a leader in gate and door motors in 72 countries, the company has developed more than hardware and now offers an automation ecosystem for access control security.

Read more...
XJTAG launches two new Flash programmers
ASIC Design Services DSP, Micros & Memory
XJTAG has announced XJExpress and XJExpress-FPGA, a pair of Flash programmers perfect for development, debug and in-service applications.

Read more...
Innovations shaping the safety and security landscape
Integrated Solutions Products & Solutions
TMT Services and Supplies is excited to connect with all attendees, share insights, and explore the latest trends and innovations shaping the safety and security landscape.

Read more...
Putting security in gear
Asset Management Products & Solutions
The inaugural Securex Cape Town 2025 will showcase a number of companies focused on vehicle and fleet security on South Africa’s dangerous and often crime-infested roads.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved