Telecoms, Datacoms, Wireless, IoT


Wireless mesh networking: ZigBee vs DigiMesh

6 August 2008 Telecoms, Datacoms, Wireless, IoT

Mesh networking is a powerful way to route data. Range is extended by allowing data to hop node to node and reliability is increased by ‘self healing’, the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee, which is specifically designed for low-data rate, low-power applications. Digi International offers several products based on ZigBee. Additionally, the company has developed an alternate mesh protocol named DigiMesh. Both ZigBee and DigiMesh offer unique advantages important to different applications, as this article considers.

ZigBee nodes

The ZigBee protocol defines three types of nodes: coordinators, routers and end device, with a requirement of one coordinator per network - see Figure 1.

Figure 1. A typical ZigBee network
Figure 1. A typical ZigBee network

While all nodes can send and receive data, there are differences in the specific roles they play.

Coordinators are the most capable of the three node types. There is exactly one coordinator in each network and it is the device that establishes the network originally. It is able to store information about the network, including security keys.

Routers act as intermediate nodes, relaying data from other devices.

End devices can be low-power/battery-powered devices. They have sufficient functionality to talk to their parents (either the coordinator or a router) and cannot relay data from other devices. This reduced functionality allows for the potential to reduce their cost.

ZigBee offers these advantages:

* Open standard with interoperability between vendors.

* Option for lower cost, reduced function end nodes.

DigiMesh nodes

DigiMesh has only one node type. As an homogenous network, all nodes can route data and are interchangeable - see Figure 2. There are no parent-child relationships. All can be configured as low-power/battery powered devices.

Figure 2. A typical DigiMesh network
Figure 2. A typical DigiMesh network

DigiMesh offers these advantages:

* Network setup is simpler.

* More flexibility to expand the network.

* Increased reliability in environments where routers may come and go due to interference or damage.

Sleeping routers

Allowing a node to sleep reduces power consumption, which is especially helpful for nodes that are battery powered. Currently, ZigBee allows for end devices to sleep but not routers or coordinators. DigiMesh allows all nodes to sleep, thereby increasing battery life.

Sleeping is allowed by time synchronisation. Some systems require a gateway or coordinator to establish time synchronisation. A significant advantage of DigiMesh is that it eliminates the single point of failure associated with relying on a coordinator or gateway. Instead, it establishes time synchronisation through a nomination and election process, enabling the network to operate autonomously.

Additional differences

Since ZigBee is an open standard, it offers the potential for interoperability with devices made by different vendors. This provides the ability to have over-the-air firmware updates. Furthermore, ZigBee offers established profiles for common applications such as energy management and lighting controls. A good selection of diagnostic support tools, like RF packet sniffers, is also available.

Table 1. Comparison between ZigBee and DigiMesh
Table 1. Comparison between ZigBee and DigiMesh

DigiMesh, as a proprietary protocol, allows for tighter control of code space and therefore more room for growth in features. It is available on platforms with longer range and more RF data rate options. Frame payload is generally larger, which can improve throughput for applications that send larger data blocks. Additionally, DigiMesh uses a simplified addressing method, which improves network setup and troubleshooting.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...
LoRaWAN-certified sub-GHz module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL5M from ST Microelectronics is the company’s first LoRaWAN-certified module which incorporates two cores, one of them being a wireless stack to optimise the creation of sub-GHz applications.

Read more...
3D depth sensing sensor
Avnet Silica Telecoms, Datacoms, Wireless, IoT
A recent announcement by STMicroelectronics has revealed an all-in-one, direct Time-of-Flight (dToF) 3D LiDAR (Light Detection And Ranging) module with 2,3k resolution.

Read more...
Quectel announces module for RedCap comms
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The Quectel RG255G offers downlink performance of 220 Mbps, and uplink performance of 121 Mbps on 256QAM or 91 Mbps on 64QAM.

Read more...
Wide-Bandgap Developer Forum
Infineon Technologies Telecoms, Datacoms, Wireless, IoT
This year marks a new chapter for this exclusive event series – all specialist presentations will be broadcasting live from a studio in Munich.

Read more...
Multimode smart LTE module with GNSS
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The AW200Z LTE module is equipped with Bluetooth and Wi-Fi functionalities, and is powered by Qualcomm's advanced 64-bit quad-core Cortex-A53 processors, coupled with an integrated Adreno 702 GPU.

Read more...
LEXI-R10 series cellular module
RF Design Telecoms, Datacoms, Wireless, IoT
The LEXI-R10 Series from u-blox are LTE Cat 1 bis modules that support multi-band LTE-FDD, and are designed for size-constrained devices.

Read more...
Quectel modules above average in security
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that nearly 95% of all its modules shipped to the United States since the beginning of 2022 have industry-leading security scores based on penetration testing and binary analysis by Finite State.

Read more...