Power Electronics / Power Management


HV MOSFET for ruggedness, smart PWM controller for flexibility

30 June 2020 Power Electronics / Power Management

As the world recently celebrated Earth Day, STMicroelectronics’ blog recently featured one of its many components that help better manage the electricity people consume every day and therefore, decided to focus on the VIPer26K. The high-voltage converter destined for power supplies below 12 W distinguishes itself thanks to a MOSFET with a breakdown voltage (BV) of up to 1050 V. As a result, the device tolerates a much more extensive range of input voltages than the traditional competing models with 700 V BV or even 800 V BV.

The VIPer26K is the only device of its kind that includes a MOSFET with such a high breakdown voltage, making it an excellent device for, among many other applications, smart power meters that typically draw very little power, but must deal with an unusually broad range of input voltages.

The most apparent benefit of the VIPer26K is the fact that it works as a substitute for a high-voltage plus stacked FET architecture. Traditionally, engineers must stack two MOSFETs with lower breakdown voltage and add passive components to obtain the same electrical capabilities. Additionally, the VIPer26K houses the MOSFET and the controller under one roof.

Hence, designers can vastly simplify their PCB, which will lower their bill of materials and improve the overall reliability by eliminating potential points of failure. For instance, when planning for a snubber circuit, which limits the voltage spike due to leakage inductance when a switched-mode power supply turns on, the 1050 V BV of the VIPer26K means engineers can use fewer components and thus benefit from an overall smaller PCB.

The VIPer26K supports three-phase voltage supplies, which makes it an excellent tool for auxiliary power supplies in industrial settings. The fact that the device also draws less than 30 mW at 230 V a.c. in standby power means that it will work wonders in a power supply for an LED driver or even a microcontroller, thus largely exceeding the realm of smart meters.

The device also comes with a myriad of safety features, from safe auto-restart after a fault condition, to an over-current protection and a thermal shutdown system to prevent any damages from overheating. Finally, thanks to the presence of a PWM controller and an error amplifier, it’s easy to include the VIPer26K in many switched-mode power supply topologies, such as isolated flyback (secondary-side and primary-side regulation), non-isolated flyback, buck and buck-boost.

Plenty of development boards to satisfy all topologies

The flexibility of the device, brought on by the presence of the error amplifier, is reflected in the number of development boards that users can choose. The STEVAL-VP26K01B adopts a buck topology and the STEVAL-VP26K01F is a three-output isolated flyback converter whereas the STEVAL-VP26K02F adopts the same topology as the latter but offers a dual-output isolated secondary side regulation and the STEVAL-VP26K03F provides a dual-output isolated primary side regulation.

The latter three offer variations for smart meter applications, while the first board acts as a reference design for other more general applications. The STEVAL-VP26K01B is also a cost-effective way to test the safety features of the converter and the design itself meets the EN55022 – Class B EMI regulation standard with just the use of a simple LC input filter, making it a great starting point for designers.

The STEVAL-VP26K02F is undoubtedly the most common development platform because traditionally, users that aim for an isolated flyback topology will call on secondary side regulation. ST also offers the STEVAL-VP26K03F because primary side regulation means engineers don’t need to use an optocoupler, thus reducing the number of components on the board while still providing isolation. The system loses the precision that comes with secondary side regulation. However, for many applications, the performance remains excellent, which makes it a trade-off that is easily worth it, not only because of costs but because fewer components increase the mean time between failures (MTBF). Engineers looking to get a quick start can find schematics and a bill of material for each board.

For more information contact Aveshen Nair, Avnet South Africa, +27 11 319 8600, aveshen.nair@avnet.eu, www.avnet.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Smallest automotive maXTouch controllers
29 July 2020, Altron Arrow, Avnet South Africa , DSP, Micros & Memory
To help enhance and ease today’s driving experience, automotive manufacturers are implementing additional touch displays beyond the centre infotainment display (CID). Supporting the application of these ...

Read more...
MOSFET half-bridge power stage
30 June 2020, Altron Arrow , Power Electronics / Power Management
Vishay Intertechnology introduced a new 30 V n-channel MOSFET half-bridge power stage that combines a high-side TrenchFET MOSFET and low-side SkyFET MOSFET with integrated Schottky diode in one compact ...

Read more...
Programmable electronic DC loads with energy recovery
30 June 2020, Vepac Electronics , Power Electronics / Power Management
Elektro-Automatik’s new series of electronic DC loads with energy recovery to mains, called EA-ELR 9000 HP, is an advancement of the series EA-ELR 9000. It offers a wider AC input range for operation ...

Read more...
18 V synchronous buck converters
30 June 2020, Altron Arrow , Power Electronics / Power Management
Suitable for consumer and industrial applications, Diodes Incorporated announced the AP62xxx family of high-efficiency synchronous step-down DC-DC converters including the AP62250 (2,5 A), AP62300 (3 A), ...

Read more...
MOSFET half-bridge power stage
30 June 2020, Altron Arrow , Power Electronics / Power Management
Vishay Intertechnology introduced a new 30 V n-channel MOSFET half-bridge power stage that combines a high-side TrenchFET MOSFET and low-side SkyFET MOSFET with integrated Schottky diode in one compact ...

Read more...
Laser diode driver power supplies
30 June 2020, Vepac Electronics , Power Electronics / Power Management
DEI offers a variety of laser diode driver instruments designed with the laser researcher, system designer and scientist in mind. In both bench-top and rack-mount configurations, as well as a variety ...

Read more...
USB Type-C power delivery controller
30 June 2020, CST Electronics , Power Electronics / Power Management
The MAX77958 from Maxim Integrated is a robust solution for USB Type-C CC detection and power delivery (PD) protocol implementation. It detects connected accessories or devices by using Type-C CC detection ...

Read more...
3 kW TVS diode arrays
30 June 2020, Avnet South Africa , Circuit & System Protection
To ensure critical operations, aviation and space systems rely on digital and logic functionality and circuitry in engine control units, environmental controls, instruments and actuators. Data centres, ...

Read more...
What’s in your healthcare monitor?
29 July 2020, Altron Arrow , Power Electronics / Power Management
System designers of portable and wireless medical monitoring devices used for in-home patient health monitoring purposes face daunting design challenges such as thermally- and space-constrained enclosures, as well as being able to transmit data without interference or interruption.

Read more...
Laser diode driver power supplies
29 July 2020, Vepac Electronics , Power Electronics / Power Management
DEI offers a variety of laser diode driver instruments designed with the laser researcher, system designer and scientist in mind. In both bench-top and rack-mount configurations, as well as a variety ...

Read more...