Editor's Choice


Smoke detection matters

30 September 2020 Editor's Choice Analogue, Mixed Signal, LSI

By far the biggest safety challenge in smoke detection is the saving of lives. Innovations in the smoke detection market have been driven by factors that include the following:

• Growth in industrial buildings: The International Energy Agency (IEA) predicts that the floor area of buildings globally is set to grow at approximately 3% per year. This is a result of increasing urbanisation and improved access to energy in developing countries.

• The increasing use of synthetic material within buildings.

This is why smoke detection regulations are critically important when the value proposition is as basic as human life itself. There are two predominant smoke detection technologies used in smoke detector systems:

• Ionisation systems.

• Photoelectric smoke detectors.

Here are some of the pending and current global standards and what they mean for smoke detection technology and markets.

A summary of global standards

There are basically five main global standards with different requirements to pass the respective certification. Smoke detector systems need to be fully tested as an end-product, but testing can also happen at the subsystem level. This does not substitute for full certification, but can give peace of mind before embarking on costly end system certification.

US and Canada

• UL 268: Smoke Detectors for Fire Alarm Systems.

7th edition: This was due to come into effect on 29 May 2020, although it may be delayed until 30 June 2021.

• UL 217: Smoke Alarms.

8th edition: This was due to come into effect on 29 May 2020, although it may be delayed until 30 June 2021.

These standards include updates to the polyurethane flaming and smouldering and cooking nuisance (hamburger) tests.

Europe

• EN 14604: Smoke Alarm Devices (2006).

• BS EN 54: Fire Detection and Fire Alarm Systems (2015).

Part 29: Multisensor fire detectors, these are point-type detectors using a combination of smoke and heat sensors.

International

• ISO 7240: Fire detection and alarm systems (2018).

Part 7: Point-type smoke detectors using scattered light, transmitted light, or ionisation.

The Chinese standard for point-type smoke detectors follows the 2003 edition of this standard.

Details on testing

There are two aspects to each standard, the tests and the requirements for test setup.

Fire room tests are expressed in terms of time to alarm after initiation of fire or in terms of obscuration levels (or in some cases both). Obscuration is a unit of measurement for the concentration of smoke. It measures the amount of light that reaches the detector in the presence of smoke compared to the amount of light that reaches the detector in clean air. The higher the value of obscuration, the higher the smoke concentration levels will be.

The most stringent testing standards are currently NA/Canada UL 217 and UL 268.

Some of the relevant tests are given below, but there are many more.

UL 217 (8th edition)/UL 268 (7th edition)

• Paper fire: Must give an alarm before t = 240 s.

• Wood fire: Must give an alarm before t = 240 s.

• Smouldering smoke: Must give an alarm before obscuration levels exceed 29,26%/m.

• Flaming polyurethane foam: Must give an alarm before obscuration levels exceed 15,47%/m and t = 360 s.

• Smouldering polyurethane: Must give an alarm before obscuration levels exceed 34,3%/m.

• Hamburger (nuisance alarm): Must not give an alarm/fault before obscuration levels exceed 0,987%/m or the MIC value is in the 59,3% to 49,2% range.

• Sensitivity test, dust test, high humidity test: Must not give an alarm/fault. The sensitivity test measures the obscuration level at which the unit alarms in a controlled smoke chamber.

• Flammable liquid fire (UL 268 Canada only). Must give an alarm before t = 240 s.

For EN 14604, BS EN 54 and ISO 7240, there can be different sensitivity levels on the same test or additional specifications pertaining to, for example, liquid (heptane) fire, glowing smouldering cotton, or low temperature, black smoke liquid fire.

For a complete set of tests, the relevant specification must be referenced in full.

Smoke detection technology: one size does not fit all

Each international region has a very detailed set of tests that have different methods and setups for testing.

Passing UL 217 and UL 268 standards − currently the most stringent two standards − can give a good indication of compliance, although this is not a substitute for regional testing.

Using a component or subsystem that is UL-listed gives peace of mind. UL component recognition means that UL has evaluated components or materials intended for use in a complete product or system. These components are intended only for end-use products that may be eligible for UL certification. The ADPD188BI plus smoke chamber is currently pending for UL listing.

The ADPD188BI smoke detection module integrates LEDs, a photodiode and an analog front end (AFE) in one small 3,8 mm × 5,0 mm × 0,9 mm package. The benefits include:

• A reduced component count.

• Meets new and existing regulations for life safety due to a high signal-to-noise ratio (SNR) and wide dynamic range for lower signal measurement.

• Reduced nuisance alarms to ensure verified alerts (and avoid alarm disable) by having two-colour detection and high dynamic range.

• Low power dissipation to allow more devices on wired or wireless loops.

• Small size to enable placement of detectors in hard to reach places.

• The elimination of LED supply chain management requirements.

• Running on a standard SMT assembly process.

The future

Regulatory changes have driven the trend toward smaller, more accurate smoke detection systems. In addition to the regulatory changes, customers are demanding better aesthetics and a wider range of trickier deployment scenarios. Meeting this demand will require smaller form factors at lower power.

About the author

Grainne Murphy is a marketing manager in ADI’s Intelligent Buildings Group. She is a University of Limerick, Ireland graduate (B.Eng) and holds an MBA from Oxford Brookes University. She can be reached at [email protected].


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
Questing for the quantum AI advantage
Editor's Choice AI & ML
Two quantum experts disclose high hopes and realities for this emerging space.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...
From the editor's desk: Progress meets reality
Technews Publishing Editor's Choice
In the first half of 2025, renewable energy, incorporating solar, wind, and to a lesser degree hydropower and bioenergy, has generated more electricity globally than coal did.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved