Power Electronics / Power Management


Maintaining backup battery systems for maximum usage and reliability

30 September 2020 Power Electronics / Power Management

Standby battery backup systems play a critical role in keeping essential operations functional in the event of a utility outage. Facilities like data centres, hospitals, airports, utilities, oil and gas facilities, and railways can’t operate without 100 percent backup power reliability. Even standard commercial and manufacturing facilities have backup power systems for their emergency systems, alarms and controls, emergency lighting, steam and fire control systems.

Most backup power systems use an uninterruptible power supply (UPS) and a string of batteries. The UPS backs up the digital control system (DCS) to keep control of plant operations until systems can be safely shut down or until the auxiliary generator kicks on.

Although most batteries used in modern day UPS systems are ‘maintenance free’, they are still susceptible to deterioration from corrosion, internal shorts, sulphation, dry-out, and seal failure. This article outlines best practices for keeping these battery banks at optimum performance, so that if an outage does occur, the backup is ready.

Top two indicators of battery health

1. Internal battery resistance

Internal resistance is a lifespan test, not a capacity test. Battery resistance stays relatively flat up until the end of life draws near. At that point, internal resistance increases and battery capacity decreases. Measuring and tracking this value helps identify when a battery needs replacing.

Only use a specialised battery tester designed to measure battery resistance while the battery is in service. Read the voltage drop on the load current (conductance) or the AC impedance. Both results will be in ohmic values. A single ohmic measurement is of little value without context. Best practice requires measuring ohmic values over months and years, each time comparing them to previous values on record to create a base line.

2. Discharge testing

Discharge testing is the ultimate way to discover the true available capacity of a battery but can be complicated to perform. In discharge testing, a battery is connected to a load and discharged over a specified period. During this test period, current is regulated, and a constant known current is drawn while voltage is measured periodically.

Details of the discharge current, the specified time period for discharge testing, and the capacity of the battery in ampere hours (Ah) can be calculated and compared to the manufacturer’s specification. For example, a 12 V, 100 Ah battery may require a discharge current of 12 A for an eight-hour period. A 12 V battery would be discharged when the terminal voltage is 10,5 V.

Batteries cannot support critical loads during and immediately after a discharge test. Transfer critical loads to a different battery bank until well after the test is complete and then reconnect a temporary, comparably sized load to the batteries under test. In addition, before conducting the test, prepare a cooling system to compensate for a rise in ambient temperature. When large batteries discharge, they release a significant amount of energy expended as heat.

Healthy batteries should maintain a capacity above 90% of the manufacturer’s rating; most manufacturers recommend replacing the battery if it falls below 80%. When conducting battery tests, look for these indicators of failure:

• Drop in capacity of more than 10% compared to the baseline or previous measurement.

• 20% or more increase in impedance compared to baseline or previous measurement.

• Sustained high temperatures compared to baseline and manufacturer’s specifications.

• Degradation in plate condition.

How to conduct standard battery tests

1. Float voltage

• Isolate the battery or batteries from the charging system and the load.

• Measure the individual cell voltage or string using a digital multimeter or battery analyser such as on a monthly basis.

2. Charger output

• Measure the charger output voltage at the charger output terminals using a digital multimeter or battery analyser such as the Fluke 500 Series battery analyser on a monthly basis.

• Observe the output current shown on the charger current meter or use an appropriate DC current clamp meter. Measure monthly.

3. DC float current

• Refer to the manufacturer’s specifications for approximate values for expected float currents.

• Use an appropriate DC current clamp meter to measure expected float current on a monthly basis.

4. Internal ohmic values

• Use a battery analyser such as the Fluke 500 Series to measure the individual battery ohmic values on a quarterly basis.

• Establish reference values and maintain in the battery database.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.

Read more...
A new class of sampling scope
Comtest Test & Measurement
The PicoScope 9400A Series combines the huge analogue bandwidth of sampling oscilloscopes with the triggering architecture of real-time oscilloscopes.

Read more...
New SiC power MOSFET
Future Electronics Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.

Read more...
Fundamental motor control design challenges and solutions
Power Electronics / Power Management
Mouser Electronics has announced a new eBook in collaboration with Qorvo, featuring industry experts providing key insights into methods, power efficiency and integration solutions available for motor control applications.

Read more...
Power management IC for battery products
Power Electronics / Power Management
The nPM1304 PMIC complements Nordic’s nPM1300 PMIC with a highly integrated, ultra-low power solution and precision fuel gauging for small size battery applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved