Power Electronics / Power Management


How a power supply handles non-linear loads

26 February 2021 Power Electronics / Power Management

Non-linear loads, in the context of a power supply, are those that do not behave like an ideal resistor, such as point of load (POL) DC-DC converters and discharged capacitors that are switched onto the output, causing high currents to flow until the capacitor is charged.

Current-limit protection, or Over-Current Protection (OCP), is an essential design feature for a power supply; the techniques used include constant-current, foldback and hiccup. Of these three types, the favoured technique is hiccup current limit even though, in some cases, the circuitry to achieve this can be quite complex in nature. Upon detection of an over-current event, the whole power supply shuts down for an interval before it tries to power itself up again (auto restart). The cycle repeats, or hiccups, until the over-current fault disappears.

Figure 1. Power supply start-up into a POL converter.

Figure 2. A discharged capacitor being switched onto the established output of an AC-DC power supply with hiccup over-current protection.

Figure 3. The CFE400M can run at 300 W and have the 3000 µF capacitance switched in and still recover without going into hiccup.

The benefit to the equipment manufacturer using a power supply with hiccup current limit is that it can accommodate peak power conditions and the cable does not need to be rated at this higher peak current. Power supplies using simple analog control circuitry would typically have fixed timing for the hiccup, but digitally controlled power supplies can employ load dependent timing. Typical values are 10 s on-time for an overload condition, around 60 ms for heavy overloads and approximately 5 ms for a short-circuit condition. Off-times would typically be 1 to 2 seconds.

Figure 1 shows the start-up of an AC-DC power supply with hiccup current limit starting into a POL converter load; the yellow curve shows the output voltage and the red curve shows the current. During start-up, there is a large inrush current from the capacitors of about 150 A peak – although this inrush current is very high, it is occurring during the soft-start phase of the AC-DC power supply and is of short duration, so the power supply remains unaffected. The soft start-up characteristic of the power supply is optimised to handle this kind of inrush current and, provided that the peak occurs before the voltage comes into regulation, it’s not a problem. It can be a problem, however, when this occurs once the regulated voltage is established and the reason for this is the hiccup current limit.

In the waveforms shown in Figure 2, the blue trace shows the current supplied by the AC-DC power supply as a discharged, low-impedance capacitor is switched onto the established output. As you can see, the power supply has turned on three times – this happens because the relay bounces. At just under 60 A, there’s about 700 W being drawn from the power supply, which could cause a standard power supply to hiccup, thus preventing correct start-up of the load. In this case, however, the output does recover as can be seen by the yellow trace.

The design team at TDK-Lambda improved the hiccup current limit algorithms when it introduced the CFE series. The waveform in Figure 3 shows the CFE400M running at 24 V; when a 3000 µF capacitor is switched in, it discharges the output to almost zero (yellow trace) as it discharges the much smaller output capacitor on the product.

As you can see, the CFE is optimised to deal with this large switched capacitive load, supplying almost 50 A of output current for about 1,5 ms (in short-circuit mode) and then dropping down to a lower level of about 30 A (over-current protection mode) for approximately 50 ms, which is typically long enough for the voltage to recover.

The CFE400M can run at 300 W and have the 3000 µF capacitance switched in and still recover without going into hiccup; thus offering the benefits of hiccup current limiting, such as a 150% peak-power capability with reduced cable size requirements, whilst still being able to handle highly non-linear loads normally associated with power supplies having constant-current type OCP.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
Industrial power supply range
RFiber Solutions Power Electronics / Power Management
SynQor’s ruggedised AC-DC and DC-DC converters and filters are designed for a wide range of industrial applications, including those required to withstand harsh environments.

Read more...
PSUs for industrial applications
Power Electronics / Power Management
RECOM’s REDIIN120/240/480 series of AC-DC converters perfectly corresponds with customer needs by exhibiting high efficiency and low energy consumption at no load.

Read more...
Highest density automotive-grade power modules
Altron Arrow Power Electronics / Power Management
Vicor has released three automotive-grade power modules for 48 V EV systems, which deliver industry-leading power density.

Read more...
MOSFET for automotive applications
Altron Arrow Power Electronics / Power Management
Infineon’s OptiMOS 7 100 V is offered in the company’s versatile and robust, high-current SSO8 5 x 6 mm2 SMD package.

Read more...
Three-phase inverter reference design
Power Electronics / Power Management
The EVLPWD-FAN-PUMP reference design is a three-phase complete inverter based on the STM32G071RBT6 Cortex-M0+ microcontroller and PWD5T60 three-phase motor driver.

Read more...
Best practices for assuring successful PoE device deployment
Lambda Test Power Electronics / Power Management
Looking at the challenges of a typical IoT rollout, the biggest hurdle usually isn’t how to connect IoT devices to the LAN, but instead, how to get power cheaply and reliably to the device.

Read more...
Localise lithium and cobalt battery manufacturing
Power Electronics / Power Management
Lithium, nickel, and cobalt are three of the key minerals used in the manufacture of electric vehicle batteries, and all of these minerals are mined in southern Africa.

Read more...
Is this black powder the secret solution to EV charging woes?
Power Electronics / Power Management
We go inside Group14, a silicon battery materials company, for an up-close view of a solution that it says could help us ‘live a fully untethered technological life.’

Read more...
Advanced 28 V input 3U VPX
RFiber Solutions Power Electronics / Power Management
SynQor has announced its latest 28 V DC input VPX power supply, VPX-3U-DC28TH, featuring extended hold-up designed for critical aerospace and shipboard applications.

Read more...