Telecoms, Datacoms, Wireless, IoT


Wireless comms and positioning solutions for eMobility

28 April 2021 Telecoms, Datacoms, Wireless, IoT

iCorp Technologies is one of the largest independent distributors of electronic components in southern Africa, with a formidable line card for IoT solutions. The company offers advanced product technology from its partners including Quectel Wireless Modules, Espressif Systems and HopeRF Electronics.

iCorp believes that the future is eMobility and strives to offer its customers tailor-made solutions including GNSS, Wi-Fi 6, Bluetooth 5 and energy harvesting technology to enable customers to bring their ideas and designs to reality.


Gerrie van Heerden, iCorp technical sales engineer.

The Global Navigation Satellite System (GNSS) provides a well understood, widely deployed and accepted way to accurately determine precise location. It therefore underpins navigation, tracking and tracing of goods and assets and with billions of GNSS devices already deployed, it has become pervasive. However, GNSS applications are not one-size-fits-all and organisations are challenged to find and deploy suitable solutions that meet the constraints of their applications.

In eMobility, ride-sharing providers have to carefully balance accuracy, cost, the power demand and the dimensional footprint of a GNSS module to ensure they select the optimum solution. Often, GNSS alone is not enough to pinpoint the location of small eMobility vehicles such as eScooters, so eMobility organisations typically augment GNSS with additional sensors and algorithms like Wi-Fi 6 modules from Espressif Systems.

eMobility encompasses electric cars and trucks and public transport in addition to ride-sharing and hailing services such as those from Uber and Lyft, plus micromobility solutions such as eBikes, eScooters and eSkateboards from companies like Bird, Lime and Didi, which are also offered by Uber and Lyft. In addition, new vehicle types such as last-mile delivery robots are facing the same sorts of challenges as the micromobility market.

All services succeed or fail based on the customer experience they provide. This starts right from the first interaction, so eMobility’s first challenge is to make the vehicle easy to find. Ride-sharing providers have demonstrated this can be convenient and simple but cars are larger devices and can accommodate more expensive, larger form-factor GNSS capabilities than eScooters,

The smaller size of eBikes and eScooters further hinders users’ ability to actually locate the bike in the first place. They can easily be hidden between parked cars, behind trees or obscured by street furniture. This lack of a clear view of satellites, caused by deep urban canyons, bad weather or parking garages, makes it very challenging for any GNSS module to provide an accurate position. This is compounded by multipath effects which are prevalent in deep urban canyons.

The challenge of locating devices also affects service providers. If ride-sharing providers can’t find their vehicles, they can’t maintain them, charge batteries and relocate them to areas of greatest demand. This costs service providers in wasted worker time as well as increased downtime of their vehicles.

In perfect conditions, when the sky is clear and there are no obstructions in the way, GNSS can tell users exactly where an eScooter is. However, perfect conditions seldom exist and micromobility vehicles therefore rely on additional methods to augment GNSS performance.

Dead reckoning solves many of the issues by combining wheel speed and inertial measurement unit (IMU) data – typically accelerometer and gyroscopic information – with GNSS. The position accuracy can be affected by issues such as changes in tyre pressure, road vibration and atmospheric differences that can all affect the performance of the dead reckoning engine when GNSS is challenged. In eMobility, dead reckoning is ideally suited and provides vast improvements to positioning in deep urban canyons.

Quectel’s LC79D is an L1/L5 dual-band, multi-constellation GNSS receiver that offers an ultra-low form factor with dimensions of 10,1 x 9,7 x 2,4 mm, making it ideal for space-constrained designs such as eMobility vehicles. The LC79D’s best-in-class price point, performance and low power consumption make it an ideal and unique solution. It can track L1 and L5 bands for satellite systems including GPS, Galileo and QZSS. On the L1 band, the LC79D can track the GLONASS and Beidou satellite systems and the module tracks the IRNSS system in the L5 band. Providing L1/L5 capability offers huge diversity and connection choice in even the most unfriendly locations.

In contrast with L1-only GNSS modules, the LC79D adds the L5 band which greatly increases the number of satellites available, improves position accuracy and helps mitigate the multipath challenge. Of further value to eMobility providers, the GNSS chipset, based on 28 nm process technology, is coupled with an advanced low-power management solution that enables low-power operation and positioning determination. This makes the module well suited for the power-sensitive and battery-powered systems used in eMobility.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
ESP32-C6 achieves PSA-L2
iCorp Technologies DSP, Micros & Memory
Espressif Systems recently announced that its ESP32-C6 microcontroller has achieved PSA Certified Level 2 (PSA-L2) security certification, making it the first RISC-V-based MCU to reach this level.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
Embedded platform for compute-intensive applications
iCorp Technologies DSP, Micros & Memory
The Quectel QSM368ZP-WF is a fully featured embedded ARM platform optimised for compute-intensive industrial and IoT applications.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved