Telecoms, Datacoms, Wireless, IoT


IoT evaluation kit and Ubuntu-derived Linux distribution

26 May 2021 Telecoms, Datacoms, Wireless, IoT

The newly released WM2000EV is an elegant kit for evaluating the capabilities of the WM2000, Tibbo’s programmable Wi-Fi/BLE module.

The kit was designed to be completely self-contained and to enable the exploration of the module’s features without having to wire in any external circuitry. To this end, the board comes equipped with all essential buttons and status LEDs, temperature and light sensors, as well as a PWM-controlled RGB LED. The included CR2032 battery (installed in a holder) can be used to test out the WM2000’s low-power ‘sleep’ mode, in which the RTC continues operating and can wake the module up at a preset time.

To aid in learning about the WM2000’s features and capabilities, Tibbo has prepared a tutorial featuring a variety of projects.

The journey begins with testing the IoT/sensor application that comes preloaded on the kit’s WM2000. By following the accompanying step-by-step guide, in as little as 10 minutes you can have the WM2000 connected to and reporting the measured temperatures and light levels to the Keen service.


WM2000 evaluation kit.

The second chapter teaches you how to wirelessly upload a different application to the WM2000. This application showcases controlling the board’s RGB LED from a modern, non-reloading web page. In this step, you will also learn about the module’s ability to store two applications at once.

Further steps will explain wireless debugging, using CODY (Tibbo’s project code generator), debugging code wirelessly, connecting to Microsoft’s Azure cloud service, as well as using the WM2000 in BLE-enabled access control applications.

The kit is powered via an included USB-C cable, which can also be used as a wired debugging interface accessible from TIDE and WebTIDE software. To facilitate debugging, the board’s USB port is connected to the serial debugging pins of the WM2000 via a USB-to-serial converter IC. Wired debugging is useful when wireless debugging via Wi-Fi is unavailable or inconvenient.

Two pin headers are provided for easy access to the WM2000’s pins. The module itself is held in place by spring-loaded pins and can easily be popped out and back in. The board even features jumpers and test points for measuring the current consumption of the board and the module.

Ubuntu-based distribution for the LTPP3(G2) board

Also new, to facilitate the rapid development and deployment of Tibbo Project System (TPS)-based automation and IoT applications while offering users a familiar environment, Tibbo has created an Ubuntu-based Linux distribution. Ubuntu is one of the world’s most popular flavours of Linux. It runs on all kinds of platforms and architectures and there is a massive amount of community resources available for all project types.

Tibbo’s Ubuntu-derived distribution is ideal for system integration, one-off projects, low-volume applications, educational props and rapid prototyping of products, as well as experimentation and exploration. It provides a user experience similar to that of single-board computers such as Raspberry Pi, but on an extendable hardware foundation that was purpose-built for IoT and automation projects.


LTPP3(G2) Linux mainboard.

Those familiar with Ubuntu will find themselves at home on this new distribution offered by Tibbo. For example, there is a Personal Package Archive (PPA) that is accessible directly through the standard package management utility ‘apt-get’. The PPA contains several tools to help you get started with this Ubuntu-based distribution on the LTPP3(G2) as quickly and effortlessly as possible.

The LTPP3(G2) is a member of the TPS family. A popular choice for automation and IoT projects, the TPS lineup includes the mainboards, I/O modules called Tibbits and attractive enclosures. The LTPP3(G2) is a Linux mainboard designed around the company’s advanced Plus1 chip.

Included in the PPA, the Out-of-Box Experience (OOBE) script simplifies the device’s configuration with a series of interactive prompts that guide you through the process of setting up Wi-Fi/Bluetooth connectivity and the board’s Ethernet ports for pass-through or dual-port operation.

Despite its young age, the Ubuntu-based distribution is already hard at work at Tibbo’s manufacturing facility in Taipei. For example, it uses LTPP3(G2) boards for testing Tibbits during their production. Employing two high-definition cameras and a touchscreen, this system serves as the testbed for different Tibbits.

Thanks to the power of the Plus1’s pin multiplexing (PinMux), the individual I/O lines of the board can be remapped on the fly to cater to the needs of whichever Tibbit is being tested at the moment – no kernel rebuild or reboot required. On this new distribution, the board’s GPIO lines are reconfigurable in code, much like they are in a typical Tibbo BASIC application.

While this effort remains a work in progress, Tibbo has prepared a repository that contains not only the latest working image, but also automation scripts for customising builds through Docker.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved