Telecoms, Datacoms, Wireless, IoT


Finnish satellite sends world’s first 75 GHz signals from space

29 September 2021 Telecoms, Datacoms, Wireless, IoT

In what can be considered a proof of concept for using extremely high frequencies to ease clutter on congested terrestrial radio waves, a Finnish satellite has successfully sent the world’s first 75 GHz signals from space.

The W-Cube nanosatellite was launched into space on 30 June 2021 from Cape Canaveral, Florida on a SpaceX Falcon 9 space launch vehicle as one of the satellites on the Transporter 2 mission with 88 satellites. W-Cube was placed into its own orbit on 22 July 2021 and the first contact between the satellite and the Finnish Reaktor Space Lab (RSL) ground station was established by the next day.

The satellite, ordered from Finland by the European Space Agency (ESA), is broadcasting the signal using a radio beacon system developed by VTT Technical Research Centre of Finland and Germany’s Fraunhofer IAF. The satellite is now modelling, for the first time ever, how a 75 GHz signal can penetrate the Earth’s atmosphere. This opens possibilities for the utilisation of the high millimetre-wave frequency range in communications satellites in the future.

A new frequency range and additional capacity will be needed in the next few years as the number of data communication satellites increases and big flocks of satellites such as Starlink (operated by SpaceX) are deployed. “Today’s lower frequency ranges are divided into narrow bands over which satellites and terrestrial radio links compete. Meanwhile, no bands in the high frequency range have been shared yet among the various applications. A free, wide bandwidth enables rapid transfer of information and connections in, for example, 5G and 6G networks and in remote areas such as Northern Finland. The European Space Agency has a mission to offer these connections and in this way to invest in European competitiveness,” commented VTT senior scientist, Jussi Säily.

The penetration through the atmospheric layers by the signal needs to be understood before the frequency range can be utilised. W-Cube’s dual-frequency radio beacon system sends a 75 GHz signal through the Earth’s atmosphere to measuring ground stations in Graz, Austria and to Espoo, Finland. The data from the measurements helps in modelling how weather phenomena in space and in the atmosphere affect the signal propagation and polarisation. In addition, W-Cube broadcasts a 37,5 GHz signal, making it possible to compare the information on measurements with previous models at a low frequency range.

To save battery power, the beacon signals are only switched on when they can be detected by measuring stations in Europe. At other times the satellite charges its batteries with its solar panels. The satellite orbits the Earth approximately once every 1,5 hours and is visible from the ground station (from horizon to horizon) for about 10 minutes at a time.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved