Finnish satellite sends world’s first 75 GHz signals from space
29 September 2021
Telecoms, Datacoms, Wireless, IoT
In what can be considered a proof of concept for using extremely high frequencies to ease clutter on congested terrestrial radio waves, a Finnish satellite has successfully sent the world’s first 75 GHz signals from space.

W-Cube is a 3U-size (34 x 10 x 10 cm) Cubesat. The integrated payload has 75 GHz and 37,5 GHz radio transmitters which can be oriented towards Earth for the measurement mission.
The W-Cube nanosatellite was launched into space on 30 June 2021 from Cape Canaveral, Florida on a SpaceX Falcon 9 space launch vehicle as one of the satellites on the Transporter 2 mission with 88 satellites. W-Cube was placed into its own orbit on 22 July 2021 and the first contact between the satellite and the Finnish Reaktor Space Lab (RSL) ground station was established by the next day.
The satellite, ordered from Finland by the European Space Agency (ESA), is broadcasting the signal using a radio beacon system developed by VTT Technical Research Centre of Finland and Germany’s Fraunhofer IAF. The satellite is now modelling, for the first time ever, how a 75 GHz signal can penetrate the Earth’s atmosphere. This opens possibilities for the utilisation of the high millimetre-wave frequency range in communications satellites in the future.
A new frequency range and additional capacity will be needed in the next few years as the number of data communication satellites increases and big flocks of satellites such as Starlink (operated by SpaceX) are deployed. “Today’s lower frequency ranges are divided into narrow bands over which satellites and terrestrial radio links compete. Meanwhile, no bands in the high frequency range have been shared yet among the various applications. A free, wide bandwidth enables rapid transfer of information and connections in, for example, 5G and 6G networks and in remote areas such as Northern Finland. The European Space Agency has a mission to offer these connections and in this way to invest in European competitiveness,” commented VTT senior scientist, Jussi Säily.
The penetration through the atmospheric layers by the signal needs to be understood before the frequency range can be utilised. W-Cube’s dual-frequency radio beacon system sends a 75 GHz signal through the Earth’s atmosphere to measuring ground stations in Graz, Austria and to Espoo, Finland. The data from the measurements helps in modelling how weather phenomena in space and in the atmosphere affect the signal propagation and polarisation. In addition, W-Cube broadcasts a 37,5 GHz signal, making it possible to compare the information on measurements with previous models at a low frequency range.
To save battery power, the beacon signals are only switched on when they can be detected by measuring stations in Europe. At other times the satellite charges its batteries with its solar panels. The satellite orbits the Earth approximately once every 1,5 hours and is visible from the ground station (from horizon to horizon) for about 10 minutes at a time.
Further reading:
The trends driving uptake of IoT Platform as a Service
Trinity IoT
Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.
Read more...
RF power amplifier
RF Design
Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.
Read more...
Introducing the Quectel EG800Z series
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.
Read more...
NeoMesh on LoRa
CST Electronics
Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.
Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.
Read more...
USB/Ethernet smart RF power sensor
RF Design
Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.
Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design
Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.
Read more...
AI modules for edge intelligence
Otto Wireless Solutions
Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.
Read more...
High performance ISM antennas
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.
Read more...
Quad-band high-precision positioning module
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has recently announced the launch of the LG680P, a multi-constellation, quad-band GNSS module designed to deliver high-precision positioning across a wide range of applications.
Read more...