Editor's Choice


Steps to commissioning a solar power system for maximum performance

28 February 2023 Editor's Choice Power Electronics / Power Management

Commissioning a new installation is necessary as it establishes a baseline of performance for customer acceptance and follow-on maintenance.It is important not only for photovoltaic (PV) system performance, but also for the longevity of equipment, safety, ROI, and warranties. Fluke is experiencing increasing demand for high-precision handheld devices which can measure PV systems.

Step 1: Photovoltaic system design and production

Step 1 is to determine the solar resource and take into account any shading that may occur on the panels. The solar resource is measured in peak sun hours, which is the number of hours the installation achieves 1000 W/m2/day. A good solar resource can deliver 6000 W/m2, or six peak sun hours. The Fluke IRR-1 Solar Irradiance Meter can be used to determine the actual solar irradiance and shading at the site to develop a baseline.

Let’s consider a 10 kW PV array. The expected average daily production may be calculated by multiplying the 10 kW array by six peak sun hours and then by 0,85 (15% derating due to power losses in wiring and inverter). This array should produce 51 kWh per day. Or put another way, the average South African household which uses 36 kWh per day would require a PV installation of 7 kW.

Step 2: Measuring PV performance

Once the system is installed, its electrical characteristics and the actual power output of the array can be measured to make sure it’s operating as designed. The performance of a PV array is based on its current-voltage (IV) curve. Not only does an inverter convert DC to AC, but it also maximises its power output by maintaining the current and voltage at which the highest power is being produced.

The short circuit current (Isc) is the maximum current from a cell. The open circuit voltage (Voc) is the maximum voltage from a cell measured when the circuit is open. The point at which the module produces the most power is called the maximum power point (mpp).

Voc can be measured by using the Fluke 393 FC CAT III Solar Clamp to determine the voltage between the positive and negative terminals. The 393 FC is CAT III 1500 V/CAT IV 600V rated, making it safe and reliable for making measurements in CAT III environments like solar installations. The 393 FC provides audio polarity warning while testing Voc.

To test Isc, all parallel circuits are disconnected, and the circuit is safely shorted. The current between the positive and negative terminals is measured via a multimeter.

The resistance to ground should also be checked to make sure that the insulation resistance of the conductors is within specification. The Fluke 1625-2 FC Earth Ground Tester can be used to test this resistance.

Step 3: Diagnosing variances

Even when installed correctly, a PV system may not meet the expected electrical production.

Scenario 1: Open-circuit voltage or short-circuit current is higher or lower than specified on the datasheet.

In this scenario, the string of PV panels has one or more modules whose characteristics don’t meet specification. Open-circuit voltage out of range means the inverter may not output power. Short-circuit current out of range indicates there may be a module mismatch, which can severely degrade the array’s performance because the current of a string is limited by the module with the lowest current. The faulty module would need to be identified and replaced.

Scenario 2: Power output is low.

While some fluctuation in output is expected, consistently less than predicted output could be a sign of a faulty string of PV modules, a ground fault, or shading. One reason could be hot spots, the accumulation of current and heat on a short-circuited cell, leading to reduced performance and possible fire.

Ground faults are another consideration, but these are harder to diagnose and require testing the voltage and current of each conductor and the equipment grounding conductor (EGC), which carries stray current to ground. Voltage and current on the EGC indicate a ground fault which can occur due to damaged conductor insulation, improper installation, pinched wires, and water, all of which can create an electrical connection between a conductor and the EGC.

Other reasons for low power output could be shading and poor tilt and compass direction (azimuth angle) for the location. Use a solar pathfinder to find any new sources of shading and remove them, if possible. While it may not be feasible to change the tilt and compass direction of the array to point the panels more directly toward the sun, the tilt and azimuth angles should be measured to establish a baseline for future reference.

In large-scale PV systems, the power from a solar system goes through transformers after being inverted to step up the voltage, then to switchgear and medium-voltage cables where decreased insulation resistance is a common issue. For medium- and high-voltage cables, the Fluke 1555C FC 10kV Insulation Tester can be used for measurements up to 10 000 V.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.

Read more...
Altron Arrow: Empowering innovation with STMicroelectronics AI processors
Altron Arrow Editor's Choice AI & ML
ST’s AI processors are not only smarter and faster, but also incredibly efficient, enabling a new wave of intelligent solutions across multiple industries.

Read more...
The superpower driving the future of low carbon electricity
Editor's Choice
Modularity is a superpower. The advantage lies in smaller units that can be built, tested, refined, adapted, improved repetitively, allowing many experimentation and learning iterations.

Read more...
Eskom’s evolution sparks hope
Editor's Choice
Eskom’s evolution has sparked hope that a large corporation can change and learn to think outside the grid.

Read more...
True-RMS clamp meter measures 2500 A
Comtest Test & Measurement
The Fluke 376 FC True-RMS Clamp Meter with iFlex is the most advanced troubleshooting tool for industrial and commercial electricians.

Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
Four ways to enhance IoT battery performance using emulation software
Concilium Technologies Editor's Choice
Battery life affects the cost and reliability of IoT-based infrastructure and is a key purchasing consideration for consumer electronic IoT devices.

Read more...