Editor's Choice


More miles, fewer wires in future electric vehicles

26 April 2023 Editor's Choice

When new solutions for wireless battery management systems for electric vehicles (EVs) are created, customers can design EVs that are lighter, go farther on a single charge and meet the highest level of functional safety standards to improve reliability.

Underneath an electric vehicle chassis is packed with as many battery cells as the manufacturer can fit. More cells mean more charge capacity, which means longer distances travelled before needing a recharge, one of the key consumer demands.

Every battery cell must be wired to a monitor, which reports critical information to a controller to maximise battery health and performance. Since the typical EV has nearly 100 cells in a serial connection, that turns out to be several metres and kilograms of heavy-duty copper wire, producing a bulky labyrinth of battery-management cabling that consumes precious space. The mass of all that wire is a drag on driving range, reliability and price.

A new wireless battery management system concept by TI eliminates the need for this heavy, expensive and maintenance-prone wiring, creating new opportunities in EV design. It includes a proprietary wireless connectivity protocol, a set of electronic chips, and is the first to demonstrate support for system-level functional safety compliance.

“It’s like designing with a blank canvas,” said Daniel Torres, an automotive product marketing engineer at TI who focuses on connectivity. “When you don’t have to worry about wires, you can figure out new ways to take advantage of the space, and even mix and match different sizes and types of batteries.”

“More than anything else, it’s the BMS that maximises the performance, reliability and longevity of electric vehicles,” said Ankush Gupta, a product line manager for the company’s battery automotive products. “Carefully managing the charge and other operating characteristics of the batteries wrings more power out of each cell when needed, while ensuring the cells don’t prematurely run low on charge or suffer damage. Also, by eliminating communication wires, the vehicle is lighter and there is more space, freedom and flexibility to design EVs with advanced battery capabilities.”

The power of wireless BMS

Going wireless also addresses a unique vulnerability of electric vehicles: potential failure in the dense wiring and the harness that keeps them in place.

“The wire harness and connectors are mechanical components exposed to vibration, humidity and other problems,” said Mark Ng, a powertrain systems engineer at TI. “They’re much more likely to need servicing than the batteries themselves.”

With a wireless BMS, that vulnerability doesn’t exist, freeing the electric-vehicle industry of one of its biggest repair costs, and making it easier and less costly to access the batteries themselves for servicing.

And the wireless advantages carry beyond a battery’s time in a car.

Ageing EV batteries, once they’ve served their useful life in a vehicle, can also be recycled and redeployed in battery-backup units at data centres, or energy storage attached to solar- or wind-power generating facilities. Here, wireless capabilities make monitoring easy.

“You need to monitor the cell throughout its lifecycle, from the factory floor to the warehouse to the vehicle to storage after removal,” Torres says. “Instead of having to wire it up in each new situation, you can just read the data wirelessly while it sits on the shelf.”

The engineering challenge

Designing the wireless BMS solution that could do the job was an intensely collaborative project bringing together engineers across TI with expertise in battery management, connectivity and automotive systems. The requirements were daunting, noted Ram Vedantham, business line manager for 2,4 GHz connectivity. “Many of the needs were conflicting,” he said. “It took many hours of brainstorming and whiteboarding throughout the entire design process.”

For example, the solution needed high throughput to gather data from nearly 100 cells within milliseconds, with two-millivolt accuracy and an error rate of one in 10 million packets, in a harsh, noisy environment. And the chips needed to operate at lower power to avoid draining the batteries while monitoring thermal management in a parked car.

To address these design challenges, the connectivity team created a reliable proprietary wireless protocol to facilitate communication in an environment where real-time availability of the 2,4 GHz wireless network is critical. The network must be readily available so the system can monitor and manage the battery, and communicate in real-time as soon as the driver starts the EV.

“The idea is that the network connects all of the necessary components with a push of the button, every time the car starts,” Vedantham said. “This is where the reliability and performance of TI’s new proprietary wireless protocol come into play. Our team worked hard to find innovative solutions, seamlessly combining state-of-the-art wireless technology features to ensure the features of the protocol provide optimal performance, power and functionality capable of solving the system requirements.”

The team had to push the limits of wireless connectivity, so they could push the level of performance of the batteries, without sacrificing reliability.

First achievement advantage for functional safety

As validation of the team’s work, the solution was assessed by TÜV-SÜD, a leading functional safety assessor, and became the industry’s first wireless BMS concept to demonstrate support for system-level functional safety compliance up to ASIL D. The concept has also been assessed for, and demonstrates compliance with, SIL 3 in industrial applications.

Ease of implementation

Wireless battery management systems are also easier to implement because they don’t require much wiring or reconfiguring.

“It’s very quick to add a wireless BMS in new and existing car models, and our customers get the space savings right away,” Vedantham said. As a result, automakers are planning to include wireless BMS solutions in cars going into production over the next few years, moving unusually fast to adopt this new technology in their next-generation vehicles.

“Using a new wireless connectivity protocol specifically developed for this use case, our wireless BMS solution truly leads the EV industry in terms of performance and safety,” Vedantham said. “This means car manufacturers are able to bring this technology to the consumer faster than ever before.”

Torres added, “Right now, purchasing an EV may be cost-prohibitive for most people, or they worry about running out of power. A wireless BMS could bring us a step closer to broader adoption of electric vehicles.”


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
From the editor's desk: Is the current AI really what we want?
Technews Publishing Editor's Choice
The companies that develop LLMs need to change direction and concentrate on freeing up our time, not so that we can have more time to do the tasks we don’t want to do in the first place, but rather to allow us more time to do what we love.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Interview with Brian Aziz, vice president of global sales, Iridium
Editor's Choice
ridium is the leading satellite IoT player. Their network consists of 66 active low Earth orbit satellites covering every inch of the globe and are used for IoT and emergency services worldwide.

Read more...
Large capacitance MLCCs at 100 V
RS South Africa Passive Components
TDK Corporation has expanded its CGA series for automotive multilayer ceramic capacitors to 10 µF at 100 V in 3225 size.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved