Telecoms, Datacoms, Wireless, IoT


What 2024 holds in store for Wi-Fi in South Africa

29 February 2024 Telecoms, Datacoms, Wireless, IoT

Wi-Fi is poised for significant advances in 2024, to the point where fixed wireless services in unlicensed spectrum will start taking over from the currently dominant cellular and fibre services in South Africa.

This important shift will come about because of multiple factors, including the rapid advances in Wi-Fi technology, the opening up of large tracts of unlicensed wireless spectrum, and partly because of the unreliability of cellular and fibre networks in the context of South Africa’s infrastructure challenges, like loadshedding.


Paul Colmer.

The rise of fixed wireless services

Fixed wireless in the unlicensed spectrum, operated by Wireless Internet Service Providers (WISPs), is poised to emerge as a dominant force in the local wireless landscape in 2024. This technology offers several advantages over traditional cellular networks, including:

• Immunity to loadshedding: WISPs operate off-grid, eliminating concerns about power outages that can disrupt cellular services.

• Unrestricted growth: WISPs are not constrained by the high cost of high-demand cellular spectrum, enabling them to provide seamless and scalable connectivity.

• Cost-effectiveness: WISPs can offer competitive pricing compared to cellular providers, making them an attractive option for consumers.

In May 2023, ICASA opened the lower portion of the 6 GHz band for indoor Wi-Fi use. This decision represents a significant step forward for WISPs, providing them with access to additional spectrum for faster and more reliable connectivity.

Looking ahead to 2024, there are expectations that the upper band of the 6 GHz will also be made available for unlicensed use. This development would further enhance the capabilities of WISPs, allowing them to cater to a wider range of applications and deliver even higher speeds.

A Wi-Fi 7 future

The opening of the 6 GHz band will pave the way for the introduction of Wi-Fi 7, the next generation of the Wi-Fi standard.

Wi-Fi 7 will use the 2,4 GHz, 5,8 GHz, and 6 GHz bands simultaneously, resulting in an exponential leap in performance, surpassing the speeds of traditional wired connections, and making it an ideal solution for high-bandwidth applications such as virtual reality, augmented reality, and cloud-based gaming.

The emergence of ultra-fast Wi-Fi networks in the unlicensed space presents an opportunity to offload traffic from overburdened cellular networks. This approach could significantly improve network performance, especially in high-density environments such as sports stadiums. By leveraging Wi-Fi to handle a portion of the traffic, cellular networks can focus on delivering critical services and maintaining connectivity in areas with limited Wi-Fi coverage.

Wi-Fi sensing

Wi-Fi sensing, a technology that uses Wi-Fi signals to detect and track objects due to its radar, sonar and lidar-like nature, is expected to gain traction in 2024. The technology already has the potential to revolutionise various industries, including security, healthcare, and elderly care, but until now has not been widely available due to a lack of standardisation.

That all changes in 2024 when the IEEE 802.11bf Wi-Fi sensing standard is ratified. Wi-Fi sensing can then be deployed using existing hardware, greatly reducing cost implications, and making it commercially viable.

Initial applications will be as varied as they are transformative. For example, sensing will enable security systems to detect intruders or identify potential hazards by monitoring movements within buildings, without the need for specialised and expensive cameras and sensors. In healthcare settings, it can be used to track patients’ movements and monitor their vital signs. And for elderly individuals living alone, it can provide real-time insights into their wellbeing.

Naturally, the ability to detect and track objects through walls raises valid privacy concerns. However, it is important to note that this technology does not generate photorealistic images, and cannot be used to identify individuals. Moreover, privacy regulations, such as PoPI, prohibit the sharing of personal information obtained through Wi-Fi sensing without the individual’s consent.

Closing thoughts

2024 marks a pivotal year for wireless technology in general, and fixed wireless services in particular. The availablity of both lower and upper 6 GHz in the unlicensed spectrum, Wi-Fi 7, and Wi-Fi sensing, are each poised to transform the way we connect and interact with the world around us.

WISPs will play a central role in this evolution, providing consumers and businesses with access to faster, more reliable, and more innovative wireless solutions.

For more information visit www.wapa.org.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...
LoRaWAN-certified sub-GHz module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL5M from ST Microelectronics is the company’s first LoRaWAN-certified module which incorporates two cores, one of them being a wireless stack to optimise the creation of sub-GHz applications.

Read more...
3D depth sensing sensor
Avnet Silica Telecoms, Datacoms, Wireless, IoT
A recent announcement by STMicroelectronics has revealed an all-in-one, direct Time-of-Flight (dToF) 3D LiDAR (Light Detection And Ranging) module with 2,3k resolution.

Read more...
Quectel announces module for RedCap comms
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The Quectel RG255G offers downlink performance of 220 Mbps, and uplink performance of 121 Mbps on 256QAM or 91 Mbps on 64QAM.

Read more...
Wide-Bandgap Developer Forum
Infineon Technologies Telecoms, Datacoms, Wireless, IoT
This year marks a new chapter for this exclusive event series – all specialist presentations will be broadcasting live from a studio in Munich.

Read more...
Multimode smart LTE module with GNSS
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The AW200Z LTE module is equipped with Bluetooth and Wi-Fi functionalities, and is powered by Qualcomm's advanced 64-bit quad-core Cortex-A53 processors, coupled with an integrated Adreno 702 GPU.

Read more...
LEXI-R10 series cellular module
RF Design Telecoms, Datacoms, Wireless, IoT
The LEXI-R10 Series from u-blox are LTE Cat 1 bis modules that support multi-band LTE-FDD, and are designed for size-constrained devices.

Read more...
Quectel modules above average in security
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that nearly 95% of all its modules shipped to the United States since the beginning of 2022 have industry-leading security scores based on penetration testing and binary analysis by Finite State.

Read more...