Power Electronics / Power Management


Self-extinguishing batteries

29 February 2024 Power Electronics / Power Management

In a recently published study, a design for a self-extinguishing rechargeable battery is described. It replaces the most commonly used electrolyte, which is highly combustible – a medium composed of a lithium salt and an organic solvent – with materials found in a commercial fire extinguisher.

An electrolyte allows lithium ions that carry an electric charge to move across a separator between the positive and negative terminals of a lithium-ion battery. By modifying affordable commercial coolants to function as battery electrolytes, a battery that puts out its own fire could be produced.

The designed electrolyte worked well across a wide temperature range, from -70 to 80°C. Batteries that were produced in the lab with this electrolyte transferred heat away from the battery very well, and extinguished internal fires effectively.

These batteries were subjected to the nail penetration test, a common method for assessing lithium-ion battery safety. Driving a stainless-steel nail through a charged battery simulates an internal short circuit; if the battery catches fire, it fails the test. When a nail was driven through these modified charged batteries, they withstood the impact without catching fire.

Why it matters

By nature, a battery’s temperature changes as it charges and discharges, due to internal resistance (opposition within the battery to the flow of lithium ions). High outdoor temperatures or uneven temperatures within a battery pack seriously threaten batteries’ safety and durability.

Energy-dense batteries, such as the lithium-ion versions that are widely used in electronics and electric vehicles, contain an electrolyte formulation dominated by organic molecules that are highly flammable. This worsens the risk of thermal runaway which is an uncontrollable process in which excess heat inside a battery speeds up unwanted chemical reactions that release more heat, triggering further reactions. Temperatures inside the battery can rise by hundreds of degrees in a second, causing a fire or explosion.

Another safety concern arises when lithium-ion batteries are charged too quickly. This can cause chemical reactions that produce very sharp lithium needles called dendrites on the battery’s anode, the electrode with a negative charge. Eventually, the needles penetrate the separator and reach the other electrode, short-circuiting the battery internally and leading to overheating.

As scientists studying energy generation, storage and conversion, a strong interest in developing energy-dense and safe batteries is paramount. Replacing flammable electrolytes with a flame-retardant electrolyte has the potential to make lithium-ion batteries safer and can buy time for longer-term improvements that reduce inherent risks of overheating and thermal runaway.

How the project was done

An electrolyte that was non-flammable, would readily transfer heat away from the battery pack, could function over a wide temperature range, was very durable, and would be compatible with any battery chemistry needed to be developed. However, most known non-flammable organic solvents contain fluorine and phosphorus, which are expensive and can have harmful effects on the environment.

Instead, focus was shifted onto adapting affordable commercial coolants that were already widely used in fire extinguishers, electronic testing and cleaning applications, so that they could function as battery electrolytes.

Focus was directed towards a mature, safe and affordable commercial fluid called Novec 7300, which has low toxicity, is non-flammable, and does not contribute to global warming. By combining this fluid with several other chemicals that added durability, an electrolyte that had the features we sought and would enable a battery to charge and discharge over a full year without losing significant capacity, could be produced.

What is still unknown

Because lithium, an alkali metal, is scarce in our Earth’s crust, it is important to investigate how well batteries that use other, more abundant alkali metal ions, such as potassium or sodium, fare in comparison. For this reason, the study focused predominantly on self-extinguishing potassium-ion batteries, although it also showed that the developed electrolyte works well for making self-extinguishing lithium-ion batteries.

It remains to be seen whether this electrolyte can work equally well for other types of batteries that are in development, such as sodium-ion, aluminium-ion and zinc-ion batteries. The goal is to develop practical, environmentally friendly, sustainable batteries regardless of their ion type.

For now, however, since this alternative electrolyte has similar physical properties to currently used electrolytes, it can be readily integrated with current battery production lines. If the industry embraces it, it can be expected that companies will be able to manufacture non-flammable batteries using their existing lithium-ion battery facilities.

This article edited from The Conversation, www.theconversation.com

Original research paper can be sourced at https://bitly.ws/3d4Rq




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...
Reliable redundancy with the Mibbo M3DN Series
Conical Technologies Power Electronics / Power Management
Designed for use with two parallel-connected power supplies, the M3DN Series allows for true redundancy, making it ideal for mission-critical applications.

Read more...
Automotive power-over-coax inductor
RS South Africa Power Electronics / Power Management
TDK has launched the ADL8030VA, a high-performance inductor designed specifically for power-over-coaxial applications.

Read more...
Rugged PSU for challenging conditions
Conical Technologies Power Electronics / Power Management
Built for rugged reliability, the Mibbo MFC Series delivers stable, efficient power in environments where moisture, dust, and temperature extremes are everyday challenges.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
15 W power module with wide input range
Brabek Power Electronics / Power Management
RECOM’s miniature power modules provide 15 W output and operate over a wide input range of 18-264 V AC or 18-375 V DC.

Read more...
Industrial-grade DIN rail PSU
Conical Technologies Power Electronics / Power Management
The Mibbo MTR960W is a reliable and cost-effective PSU option that delivers a solid 960 W of output power at 24?or 48 V DC.

Read more...
Energy harvesting and Matter for smarter homes
RF Design Power Electronics / Power Management
Qorvo’s collaboration with e-peas on the Matter Enabled Light Switch marks another significant step in advancing Matter adoption across the IoT industry.

Read more...
3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved