Editor's Choice


Using linear regulators as a filter

31 May 2024 Editor's Choice Analogue, Mixed Signal, LSI

Linear regulators convert a higher voltage into a lower voltage. This generated voltage is precisely regulated to an adjustable value. In this way, supply voltages for a wide variety of applications can simply be generated.

However, due to their relatively low efficiency, linear regulators have been replaced with switch-mode power supplies (SMPS) in many applications. Figure 1 shows a simple linear regulator circuit for voltage conversion.

In recent years, linear regulators have found new main applications, particularly in supply line filtering. Figure 2 shows a passive filter option utilising an LC filter, which consists of a capacitor and a coil. This type of filter is preferred due to its low direct current (DC) losses, primarily attributed to the series resistance (DCR) of the coil L. Figure 2 shows such an LC filter.

The effectiveness of this filter depends on its transfer function, characterised by the double pole position in the Bode plot. The gain decreases at 40 dB per decade from the corner frequency, determined by the values of L and C. This filter acts as a low-pass filter, allowing DC voltages to pass through, while attenuating higher frequency interference, such as voltage ripple on the supply line.

Unlike active circuitry, this filter does not require active components, but relies on a coil and a capacitor. Depending on the necessary current rating and inductance of the coil, it can be quite costly.

Figure 3 shows a linear regulator used as a filter to minimise the voltage ripple of an SMPS. The effectiveness of this filter depends on the power supply rejection ratio (PSRR), which is typically represented in a graph against frequency. A good PSRR value for a linear regulator is up to 80 dB attenuation at typical switching regulator frequencies of 1 MHz.

The LT3042 shown is a linear regulator, which is particularly suitable as a filter stage, as it offers a high PSRR even at high frequencies, and causes only very little interference of its own. This is especially important in applications where a filter is required to clean a supply voltage.

There are different ways to implement a filter, and one significant advantage of using a linear regulator for filtering is its precise regulation of the output voltage. An LC filter lacks its own voltage regulation loop, causing the generated voltage to be influenced by the behaviour of the original voltage source, such as an SMPS. Depending on the DC current flow through the LC filter (shown in Figure 2), the coil’s DCR can impact the output voltage to varying degrees. While this behaviour may be acceptable for applications with constant load current, it can pose challenges in applications with varying load currents.

Conclusion

To evaluate the advantages and disadvantages of different filter implementations for specific applications, simulation tools may be highly beneficial. LTspice is a free and effective simulation tool that can assist in this process.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
16-channel multicell battery monitor
Altron Arrow Power Electronics / Power Management
The ADBMS6830B is a multicell battery stack monitor that measures up to 16 series-connected battery cells with a lifetime total measurement error of less than 2 mV.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Microchip enhances TrustMANAGER platform
Altron Arrow DSP, Micros & Memory
Firmware over-the-air updates and remote cryptographic key management provide scalable solutions for addressing IoT security challenges.

Read more...
Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved