Interconnection


The future for low power, low-latency data centres

31 May 2024 Interconnection

Electrical copper interconnects, once the backbone of data centre networks, are facing growing challenges. Rapid expansion of AI and ML applications is driving a significant increase in cluster sizes within data centres, resulting in substantial demands for faster I/O capabilities. While the surge in I/O requirements is being addressed by faster SerDes PHY technologies, interconnects are facing scaling challenges from a power consumption perspective. This, coupled with the imperative to flatten networks to minimise latency, is driving the trend to optical interconnects. Another reason for this shift is the ability of optical interconnects to reduce channel loss, thereby improving data transmission efficiency. Optical interconnects also address the rigidity and space limitations associated with copper cables, providing greater flexibility in designing and expanding data centre architectures.

The rise of optical interconnects

Optical data transfer over optical fibre, with minimal loss (compared to copper cable) over longer distances, has been in use for a long time. Optical interconnects are nothing new to the industry, but the current implementation approach uses traditional optical modules which consume a lot of power. Consequently, there is a significant push to integrate optical components into semiconductor electronics. The goal is to enable faster data transmission over longer distances, at low latencies and reduced power consumption.

Silicon photonics

Silicon photonics is a field that leverages the semiconductor manufacturing process to create optical components on silicon substrates. Integrating photonics on silicon offers numerous advantages, but comes with its set of challenges. One major challenge is achieving efficient light generation, modulation and amplification on a silicon platform. Silicon, being an indirect bandgap material, is not suitable for generation of light. As a result, integration of direct bandgap materials is required, which can be complex and costly. Silicon photonics fabrication processes can vary from one foundry to another, some allowing monolithic integration of electronics and photonics on the same chip, while the others require co-packaging of electronic and photonic chips. Overcoming these challenges is crucial for realising the full potential of silicon photonics in data centres.

OpenLight’s Photonic Integrated Circuits (PICs)

OpenLight has developed a technology to heterogeneously integrate indium phosphate (InP) onto a standard silicon process flow to create highly integrated devices. OpenLight’s PICs represent a significant advancement in the field of optical communication technology. These integrated circuits bring together a multitude of optical components, such as lasers, modulators, detectors, and waveguides, onto a single chip, offering a compact and highly efficient solution for data transmission and photonics applications. OpenLight’s integrated PICs are engineered to meet the increasing demand for high-speed data transfer, lower power consumption, and enhanced performance. By consolidating these optical elements into a single package, these PICs facilitate seamless integration with electronic circuits, enabling more efficient and cost-effective solutions for data centres.

Synopsys and OpenLight collaboration

Synopsys and OpenLight have collaborated to develop 100G/200G electro-optical interfaces that enable low power, low-latency data centres. This electro-optical interface offers pluggable direct drive or linear or non-retimed interfaces. It enables data centres to choose high-speed connectivity options that suit their specific performance and power efficiency requirements, fostering flexibility and scalability in their network architecture.

For more information visit www.openlightphotonics.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New connector for Push-X technology
Phoenix Contact Interconnection
Phoenix Contact is extending the series of PCB connectors with innovative Push-X technology to include a new connector for conductor cross-sections up to 2,5 mm2.

Read more...
Test cable designed for maximum ruggedness
Conical Technologies Interconnection
The Anoison PT test cable is designed for maximum ruggedness using a high-quality raw cable, connector, and smart armouring module.

Read more...
Safe connection under load
Phoenix Contact Interconnection
The ArcZero DC connectors from Phoenix Contact can be safely connected and disconnected under load, providing operators with reliable protection against hazardous electric arcs.

Read more...
Time-To-Market interconnect solutions
Interconnection
TTM Technologies are at the forefront of electrified powertrains, vehicle charging stations, and energy storage solutions, providing thermal management, high-current capabilities, and specialised solutions.

Read more...
Connectors for energy storage systems
Phoenix Contact Interconnection
The new Phoenix Contact BPC series connectors are protected against polarity reversal making them ideally suited for use in energy storage systems.

Read more...
What’s the big deal with open pin fields?
Interconnection
The concept behind the open pin field array is that it provides many contacts that are not limited to a single role.

Read more...
mBend cable assemblies
Conical Technologies Interconnection
The mBend cable assemblies from Anoison are designed to meet the growing demand for low-profile coaxial connections in applications where space is limited, and precise bending is necessary right next to the connectors.

Read more...
Configurable DIN rail housings
Wiltron Agencies Interconnection
With PTR HARTMANN’s INS265 design kit, DIN rail housings can be individually configured using a wide range of options.

Read more...
Connectors for the latest server applications
Spectrum Concepts Interconnection
To deliver high-speed performance, many next-generation server applications will use cables inside the box instead of PCB traces to maintain the signal integrity demanded by high-speed communications.

Read more...
Industrial Ethernet with HARTING solutions
Interconnection
In today’s fast-paced industrial landscape, Ethernet connectivity plays a crucial role in automation, ensuring seamless communication between machines and systems, and HARTING offers a wide range of innovative Ethernet products.

Read more...