Test & Measurement


New technique for measuring DNA damage could improve cancer therapy

30 September 2025 Test & Measurement

Scientists at the National Institute of Standards and Technology (NIST) have developed a new technology for measuring how radiation damages DNA molecules. This novel technique, which passes DNA through tiny openings called nanopores, detects radiation damage much faster and more accurately than existing methods. It could lead to improved radiation therapy for cancer and more personalised care for individuals during radiological emergencies.

“With nanopore sensing, we’re not just measuring radiation damage; we are rewriting the rules on how quickly and effectively we can respond to both cancer care and emergencies,” said NIST physical scientist, Joseph Robertson.

The research has now successfully completed the proof-of-concept phase, having been demonstrated in the laboratory using carefully prepared DNA in a test tube. Future plans involve developing a portable version of the technology and utilising the technique to measure radiation damage to DNA extracted from biological cells and tissues.

How the new technology works

Current methods for measuring the biological effects of radiation are slow and often ineffective at providing results when needed, particularly in medical and emergency situations. To assess radiation damage in an individual exposed to radiation, medical professionals take a blood sample and either count the number of dead cells (a process that takes at least two days) or culture cells from the sample to detect chromosomal abnormalities (which takes at least three days).

These existing techniques have a limited range and cannot measure doses above about 5 gray, which is lower than what an individual may be exposed to in a major radiological incident. A gray (Gy) is a unit that expresses the amount of radiation energy absorbed by the body or an object per kilogram of mass.

The method leverages the fact that ionising radiation, such as X-rays and gamma rays, breaks DNA into smaller fragments.

One of the key advantages of this technology is its potential portability. NIST researchers are collaborating with industry partners to develop a device that could be as small and affordable as a smartphone, making it easily accessible in hospitals, emergency response situations, and even field settings. In the coming years, researchers hope to partner with commercial entities to build a prototype device.

“This technology is not merely a leap forward; it is a lifeline,” said Robertson. “By making radiation measurement precise and accessible, we are striving to ensure that help is always within reach.”

For more information visit www.nist.gov




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Precise DC power analysis
Conical Technologies Test & Measurement
The ITECH IT2705 DC power analyser is designed to help engineers and researchers capture it all, from the tiniest deep sleep currents to the highest peak operating loads.

Read more...
What is a JTAG connector?
Spectrum Concepts Test & Measurement
JTAG was originally created to test for common problems, but lately, it has become a way of configuring devices.

Read more...
SIGLENT launches new 8 GHz DSO
Vepac Electronics Test & Measurement
SIGLENT has unveiled the enhanced SDS7000A/AP models, building on the success of its SDS7000A high-resolution digital oscilloscope series.

Read more...
Multi-functional high-res oscilloscopes
Coral-i Solutions Test & Measurement
RIGOL Technologies has launched two powerful additions to its oscilloscope portfolio that are tailored to meet the growing challenges of power electronics, automotive systems, and high-speed digital designs.

Read more...
TDK expands programmable PSU series
Accutronics Test & Measurement
With a 3U high chassis, the GAC and GAC-PRO provide extremely high-power density for a fully featured programmable AC power source.

Read more...
Analysing magnetic fields
Accutronics Test & Measurement
The engineers at Narda Safety Test Solutions have achieved a breakthrough in isotropic measurement and analysis of low-frequency magnetic fields in the form of their latest digital H-field probe.

Read more...
A new class of sampling scope
Comtest Test & Measurement
The PicoScope 9400A Series combines the huge analogue bandwidth of sampling oscilloscopes with the triggering architecture of real-time oscilloscopes.

Read more...
Single channel, programmable PSU
Electrocomp Express Test & Measurement
Rohde & Schwarz’ NGC101 is a NGC100-series power supply with a wide range of functions that make them ideal for use in development labs and industrial environments.

Read more...
Next-gen LineScan camera
Eagle Africa Technology Test & Measurement
New Imaging Technologies has launched the new LiSaSWIR, its next-generation SWIR LineScan camera and sensor.

Read more...
Ultra-portable spectrum analyser
Vepac Electronics Test & Measurement
The PXN-400Z from Harogic is a handheld spectrum analyser covering a frequency range of 9 kHz to 40 GHz with a 100 MHz analysis bandwidth.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved