Telecoms, Datacoms, Wireless, IoT


M2M antennas

11 July 2012 Telecoms, Datacoms, Wireless, IoT

According to Poynting Antennas, many misconceptions exist with regards to the unique antenna requirements for M2M (machine to machine) communications. The first thing to consider when choosing an antenna for telemetry is whether the antenna was designed for the GSM band that is used in the countries where the meters are installed. The GSM frequency bands worldwide are either 900/1800 or 850/1900.

GSM850/1900 is used by the Americas and GSM900/1800 by the rest of the world. Poynting’s OMNI-0039-05 blade antenna has been designed to cover both these bands. Many competing products are optimised for the Americas, according to Poynting, and do not work optimally in the GSM900/1800 bands. The company invites interested parties to contact it to measure the performance of the antenna they use for their metering application.

Poynting has built up extensive expertise in this regard over the past 10 years. The OMNI-0039-05 is a lightweight, magnet mount, waterproof antenna suited to any M2M application. Its gain (including cable losses) is 1,5 dBi (±0,5 dBi) and it features VSWR across operating bands of 2:1 and linear polarisation (vertical or horizontal. According to Dr Andre Fourie, who has designed, tested and evaluated hundreds of antennas, the OMNI-0039-05 has numerous advantages:

The antenna is ground plane independent because it is a dipole instead of the more commonly used monopoles. This means that the gain, radiation pattern and matching are not dependent on the size of the ground plane on which it is mounted. This is a very nice feature because the performance of the antenna does not change depending on the mounting platform, material or the orientation at which the technician installs it.

Poynting uses a thicker cable than most antennas, which ensures lower losses, especially at higher frequencies since cable loss increases with frequency. The antenna covers all the bands of interest and also all the spectra within the bands. Fourie says many antennas the company tests do not radiate in all bands – this is clearly a problem since bands are unpredictable with different operators, in different cells and may even change in future.

Many antennas radiate in all bands but do not properly cover the transmit and receive frequencies. This may mean they work sometimes and sometimes not, since operator sub-band assignments differ and GSM uses frequency hopping; also, cellular planning means different channels are used in different cells.

Regarding gain, Fourie advises that one should never look at the gain of an indoor antenna. Gain is the result of focusing radiation. In other words it is like squashing a balloon to get more in one direction while getting less in others. Indoor antennas are not aligned by anybody and if they have high gain, there is a higher possibility of getting less signal than more, since its ‘focus’ direction is likely not where the signal comes from.

Indoor signals mostly come from reflections and unpredictable propagation routes, so one should look for something ideally with 0 dBi gain (a round balloon or an isotropic antenna). Manufacturers quoting high gain on indoor antennas are in fact misleading customers, according to Fourie, since it simply does not help. There is a big difference outdoors where the antenna is either pointed in the required direction (for directional applications) or mounted properly vertical (for omnidirectional requirements).



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...
Extra slim 2,4 GHz radio module
Telecoms, Datacoms, Wireless, IoT
The Thyone I radio module from Würth Elektronik now has a little sibling: Thyone-e, which takes up 30% less space and represents a cost-effective alternative for applications in which the long-range mode is not required.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Two Bluetooth protocols – one module
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik has introduced its Skoll-I, a compact wireless module that combines both Bluetooth Classic and Bluetooth Low Energy version 5.4 into a single solution.

Read more...
Compact high-performance antennas
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX offers a variety of extremely compact and high-performance internal, on-board, multiprotocol 2,4 GHz antennas ideal for use in SiP applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved