Telecoms, Datacoms, Wireless, IoT


M2M antennas

11 July 2012 Telecoms, Datacoms, Wireless, IoT

According to Poynting Antennas, many misconceptions exist with regards to the unique antenna requirements for M2M (machine to machine) communications. The first thing to consider when choosing an antenna for telemetry is whether the antenna was designed for the GSM band that is used in the countries where the meters are installed. The GSM frequency bands worldwide are either 900/1800 or 850/1900.

GSM850/1900 is used by the Americas and GSM900/1800 by the rest of the world. Poynting’s OMNI-0039-05 blade antenna has been designed to cover both these bands. Many competing products are optimised for the Americas, according to Poynting, and do not work optimally in the GSM900/1800 bands. The company invites interested parties to contact it to measure the performance of the antenna they use for their metering application.

Poynting has built up extensive expertise in this regard over the past 10 years. The OMNI-0039-05 is a lightweight, magnet mount, waterproof antenna suited to any M2M application. Its gain (including cable losses) is 1,5 dBi (±0,5 dBi) and it features VSWR across operating bands of 2:1 and linear polarisation (vertical or horizontal. According to Dr Andre Fourie, who has designed, tested and evaluated hundreds of antennas, the OMNI-0039-05 has numerous advantages:

The antenna is ground plane independent because it is a dipole instead of the more commonly used monopoles. This means that the gain, radiation pattern and matching are not dependent on the size of the ground plane on which it is mounted. This is a very nice feature because the performance of the antenna does not change depending on the mounting platform, material or the orientation at which the technician installs it.

Poynting uses a thicker cable than most antennas, which ensures lower losses, especially at higher frequencies since cable loss increases with frequency. The antenna covers all the bands of interest and also all the spectra within the bands. Fourie says many antennas the company tests do not radiate in all bands – this is clearly a problem since bands are unpredictable with different operators, in different cells and may even change in future.

Many antennas radiate in all bands but do not properly cover the transmit and receive frequencies. This may mean they work sometimes and sometimes not, since operator sub-band assignments differ and GSM uses frequency hopping; also, cellular planning means different channels are used in different cells.

Regarding gain, Fourie advises that one should never look at the gain of an indoor antenna. Gain is the result of focusing radiation. In other words it is like squashing a balloon to get more in one direction while getting less in others. Indoor antennas are not aligned by anybody and if they have high gain, there is a higher possibility of getting less signal than more, since its ‘focus’ direction is likely not where the signal comes from.

Indoor signals mostly come from reflections and unpredictable propagation routes, so one should look for something ideally with 0 dBi gain (a round balloon or an isotropic antenna). Manufacturers quoting high gain on indoor antennas are in fact misleading customers, according to Fourie, since it simply does not help. There is a big difference outdoors where the antenna is either pointed in the required direction (for directional applications) or mounted properly vertical (for omnidirectional requirements).



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

RF fixed chip attenuators
29 January 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
The TT5 Series from Smiths Interconnect are Q-band chip attenuators that operate from DC to 18 GHz. The broadband attenuators are available in attenuation values from 0 to 20 dB in 0,5 dB increments and ...

Read more...
RF variable attenuator
29 January 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
The 4209-30-63-1 from API Technologies - Weinschel is a solid-state programmable attenuator that operates from 0,1 to 30 GHz. It has an attenuation range from 0 to 63 dB with a step size of 0,5 dB and ...

Read more...
Thingstream extends LoRaWAN support
29 January 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
It is now possible to add LoRaWAN gateways and LoRaWAN devices to Thingstream, giving developers quick, easy on-boarding, and the full power of Thingstream’s MQTT broker, and Data Flow Manager. This new ...

Read more...
Wi-Fi 6 front-end module
29 January 2020, Hi-Q Electronics , Telecoms, Datacoms, Wireless, IoT
Skyworks has introduced the SKY85772-11, a new addition to its family of front-end modules (FEMs) that are designed for growing retail, carrier and enterprise Wi-Fi 6 applications. The 5 GHz FEM offers ...

Read more...
RF power amplifier for 18 - 26 GHz
29 January 2020, RFiber Solutions , Telecoms, Datacoms, Wireless, IoT
The MAAP-118260 is a packaged linear power amplifier that operates over the frequency range 17,7 – 26,5 GHz. The device, manufactured by MACOM, provides 28,5 dB of gain and 37,0 dBm output third order ...

Read more...
Wideband GaN power amplifier
29 January 2020, RF Design , Telecoms, Datacoms, Wireless, IoT
Qorvo introduced what it claims is the world’s highest-performance wideband power amplifier (PA). Designed for electronic warfare, radar and test instrumentation applications, the TGA2962 boasts 10 W ...

Read more...
GaN is breaking barriers for RF power amplifiers
29 January 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
The increasing demand for higher data rates in telecommunications and higher resolution in industrial systems is pushing the frequency of operation higher for the electronics that support them. Many of ...

Read more...
V2X: The future of vehicle communications
29 January 2020, Avnet South Africa , Editor's Choice, Telecoms, Datacoms, Wireless, IoT
A recent report by Juniper Research forecasts that more than 62 million vehicles will be capable of vehicle-to-vehicle communication by 2023; up from just over 1,1 million in 2019.

Read more...
PCIe 2.0 packet switches
29 January 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
Diodes Incorporated announced the PI7C9X2G304EVQ and PI7C9X2G404EVQ PCIe 2.0 packet switches, offering 3-ports/4-lanes and 4-ports/4-lanes, respectively. The packet switches are automotive-compliant for ...

Read more...
High-performance IoT SoCs with dual processors
29 January 2020, RF Design , Telecoms, Datacoms, Wireless, IoT, Editor's Choice
Nordic Semiconductor’s new nRF5340 high-end multiprotocol system-on-chip (SoC) is the first member of its next generation of nRF5 Series SoCs. The nRF5340 builds on Nordic’s proven and globally adopted ...

Read more...