Power Electronics / Power Management


Infineon boosts power density with PowerStage 3x3 package

14 November 2012 Power Electronics / Power Management

Power Semiconductors are facing rising demands. Faster switching frequencies and higher operating temperatures provide a challenge for packaging and system concepts.

Notebooks of today and tomorrow require an increase of DC-DC voltage converters because of features such as HD DVD players, various network connections, and interfaces such as Bluetooth, wireless and USB. They have to be smaller, thinner and lighter.

Infineon’s answer to this trend is the introduction of products in the PowerStage 3x3 package.

PowerStage 3x3

The PowerStage 3x3 is a leadless SMD package which integrates the low-side and high-side MOSFET of a synchronous DC/DC converter into a 3,0 x 3,0 mm package outline with only 0,8 mm package height (Figure 1).

Figure 1. Layout of the PowerStage 3x3.
Figure 1. Layout of the PowerStage 3x3.

On the bottom of the package, two separate exposed pads are located which are optimised for the chip size of the low-side and the high-side MOSFET for advanced power dissipation.

Saving space dramatically

A simplified block diagram of a typical notebook-application is shown in Figure 2. Besides the power supply for the CPU, which requires high current and therefore high power dissipation capability, all other rails are in the range of 5 A to 10 A. That is where the PowerStage 3x3 fits ideally.

Figure 2. A simplified block diagram of a typical notebook application.
Figure 2. A simplified block diagram of a typical notebook application.

The typical topology for the power conversion in the above-mentioned applications is the buck converter. Today`s standard solution is realised in a 5 x 6 mm (SuperSO8) or 3 x 3 mm (S3O8) package. Figure 3 shows the comparison of the area consumption in a buck converter with one high-side and one low-side MOSFET.

Figure 3. Comparison of the area consumption in a buck converter.
Figure 3. Comparison of the area consumption in a buck converter.

With the PowerStage3x3, designers can dramatically save space compared to two single products.

Two different products

With the BSZ0907ND and BSZ0908ND, Infineon Technologies offers two different products in the PowerStage 3x3 package. Table 1 provides a summary of the most important parameters (typical values at 4,5 V driving voltage). Both products are realised in the OptiMOS 30 V voltage class which targets voltage regulation applications in the computing and telecom segment.

Table 1. BSZ0907ND und BSZ0908ND performance parameters.
Table 1. BSZ0907ND und BSZ0908ND performance parameters.

With its low Rds(on) values, the BSZ0907ND can handle 12,5 A (without airflow) and more, depending on the cooling conditions in the application. With higher Rds(on) values in the high-side and low-side MOSFET, the BSZ0908ND is designed to handle currents in the range of 5-10 A.

The Rds(on) ratio of both products is adjusted to fit a broad range of power conversions for different applications and especially for applications like mobile computing with a conversion from 21 V or 16 V down to 1,5 V.

Increasing efficiency

The QGD of the high-side MOSFET (in both products) is low in order to keep the switching losses balanced with the conduction losses and have very high peak efficiency; this is quite important especially in notebook applications where the system is working in low power range most of the time.

A low QG is realised in order to preserve high efficiency at very low load or when the system is in an idle state. This helps to maintain the battery charge for a longer time. The very low thermal resistance (55 K/W) allows the products to deliver up to 2,3 W of power; the interconnection of the chip and the pins are designed to handle 30 A, which can occur in the voltage regulation during load transients.

Top performances in the application

The PowerStage 3x3 not only offers a very compact solution for half-bridge MOSFETs itself, but also simplifies the layout of the overall buck converter. In Figure 4 an easy layout solution with the PowerStage 3x3 is shown. The area for the overall solution is 12 x 12 mm; this very dense layout is possible due to the optimised pinout of the package.

Figure 4. Simplified layout of the overall buck converter with PowerStage 3x3.
Figure 4. Simplified layout of the overall buck converter with PowerStage 3x3.

The input capacitance can be located easily between the drain of the high-side and the source of the low-side MOSFET. This minimises the parasitics of the connections. The two gates of the low-side and high-side MOSFETs can easily be connected to the driver on the bottom of the board through two small vias. The output filter can be accommodated on the right side of the package.

Efficiency measurements

With particular attention to the notebook market, some tests were performed in order to show the package’s capabilities as well as product performances. The tests are performed mainly under notebook conditions, but they can also be used as a reference for other applications.

Figure 5 shows the efficiency versus output current for two different input voltages: 12 V and 21 V. In the notebook application, 12 V corresponds to the operating conditions with a battery (3 cells Li-Ion) and 21 V is related to the adaptor output voltage. In both cases the efficiency is above 90% in the range of 20% to 80% of the output load. For low load condition (0,5 A) efficiency values above 80% can be achieved.

Figure 5. Measurement results for efficiency.
Figure 5. Measurement results for efficiency.

In Figure 6 the thermal capabilities of the package are shown; once a continuous current of 12,5 A is applied the top case temperature will not exceed 110°C.

Figure 6. Thermal capabilities.
Figure 6. Thermal capabilities.

In the waveforms in Figure 7, the VDS high-side MOSFET, low-side MOSFET and the input voltage are plotted. Conditions of the measurement are: VIN = 12 V, FSW = 500 kHz, VOUT = 1,5 V, L = 1,2 μH (Coilcraft SER1590, DCR = 0,8 mΩ); driver: PX3516.

The overshoot (the value of the maximum voltage during the oscillation across the device) on the low-side MOSFET is 23 V, which is below 80% of the VBDSS value specified in the datasheet. Also the damping factor of the ringing is high in order to have low noise irradiation and therefore low EMI influence. Especially for equipment with wave transmitters where many logic signals occur, this low noise irradiation provides a great benefit.

For more information contact Davis Moodley, Infineon, +27 (0)11 706 6099, www.infineon.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Why your PoE budget could make or break your next installation
Power Electronics / Power Management
In South Africa’s often unpredictable networking environments, understanding and planning your PoE budget is essential for system reliability, customer satisfaction, and long-term scalability.

Read more...
Five-minute EV charging a reality
Power Electronics / Power Management
Successfully demonstrated in Beijing recently at the Shanghai auto show, BYD claimed to add 400 km of range in just five minutes of charging.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Power and precision in a compact package
Conical Technologies Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Robust PoE module
CST Electronics Power Electronics / Power Management
The Ag59800-LPB high power, IEEE 802.3bt compliant, PD module from Silvertel offers typical efficiency of 95% making it an ideal choice for higher power, space-constrained applications.

Read more...
Cutting-edge solutions for Africa’s clean energy future
Power Electronics / Power Management
As Africa pushes towards reliable, affordable, and sustainable energy, Sungrow is driving transformation with cutting-edge innovations that enhance grid stability, reduce energy costs, and expand access to clean power.

Read more...
Transformer protection is a critical safeguard for municipal power stability
Power Electronics / Power Management
Transformer protection is not just a technical requirement; it is a vital component in ensuring the resilience and operational integrity of South Africa’s municipal power infrastructure.

Read more...
Reliable power solution
Conical Technologies Power Electronics / Power Management
The Mibbo MLD-120W-xxVx is a robust DIN-rail mounted DC-DC converter with a 120 W output capacity specifically designed for industrial and automation applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved