Test & Measurement


iOLM technology eases FTTx/PON network testing

23 January 2013 Test & Measurement

Of the current test methods for testing FTTx (Fibre to the ‘x’, with x being a placeholder for various end-points) and PON (passive optical network) installations, OLTS, using an optical loss test set (optical power meter and light source) to characterise a link is easy; however it has one major limitation: it cannot locate the problems on the link. Furthermore, an OLTS requires two units and two technicians, thus increasing OPEX.

Figure 1. End-to-end test with a pair of OLTS units. This method may be fast, but will not locate the problem on the link.
Figure 1. End-to-end test with a pair of OLTS units. This method may be fast, but will not locate the problem on the link.

The most popular test method during construction and in certifying FTTX/PON installations is an OTDR (optical time domain reflectometer). A well trained and skilled optical technician can identify and locate problems on a link, using multiple acquisitions with different OTDR test settings and after various manual OTDR trace comparisons.

Figure 2. Incomplete OTDR test results on a 1x32 PON due to improper testing parameters set by a technician who is lacking OTDR testing experience.
Figure 2. Incomplete OTDR test results on a 1x32 PON due to improper testing parameters set by a technician who is lacking OTDR testing experience.

The shift from copper to fibre and the explosion of fibre deployments has created a shortage of skilled and experienced technicians. Combine this with budget constraints, lack of credible training facilities, practical experience and the result is an increased risk of improper testing, misdiagnoses, unusable OTDR results and repeat repairs/truck rolls.

Figure 3. Portable test setup with launch and receive fibres for a PON-line certification with a 1x32 splitter.
Figure 3. Portable test setup with launch and receive fibres for a PON-line certification with a 1x32 splitter.

The complexity of a PON/FTTx network requires skilled optical technicians to set different acquisition parameters on the OTDR to get the required information. Single OTDR measurement and auto test settings on today’s OTDRs are incapable of fully characterising this type of network.

To overcome this limitation, skilled technicians perform multiple additional acquisitions on the OTDR with other parameters to fully characterise the link.

Figure 4. Example of test results. All the information, including diagnostics, is provided in a single view.
Figure 4. Example of test results. All the information, including diagnostics, is provided in a single view.

Portable applications

EXFO’s new test solution is an ‘intelligent’ OTDR. Essentially it is a software application that runs on the test unit that is able to set and take multiple and variable acquisitions, then analyse the information to generate a detailed linear diagram about every element on the link, in a single-button operation, providing maximum simplicity for expert-level link characterisation.

This new test method makes every technician a fibre-optics expert, whether they are testing in the field or from the central office. Plus, it does not require the parameter settings used in traditional OTDR testing, which means no distance, pulse width or averaging time setting with detection threshold setting required.

iOLM (intelligent Optical Link Mapper) technology stems from the need to create optimal testing technology for PON networks, as this is the most challenging network to test because of its short link lengths and many closely spaced elements, such as splices, connectors and splitters.

As shown in Table 1, the maximum IL difference between iOLM and the reference method (PM/LS) is 0,64 dB, which compares favourably to the OLTS method. Based on the PM/LS and the OLTS results, an experienced technician could have suspected a macrobend on the line because the difference in loss is more than 1 dB between 1310 and 1550 nm.

Table 1. IL test results from the different methods.
Table 1. IL test results from the different methods.

However, he would have no clue as to the location of the macrobend. He could therefore use an OTDR and a different combination of pulse widths to find the macrobend himself. With iOLM any technician will be able to clearly see that there is a macrobend immediately after the splitter (see Figure 5 showing a test conducted from ONT to OLT).

Figure 5. Image showing the position of a macrobend once analysed by a portable OTDR with multi-pulse acquisition and analysis capabilities.
Figure 5. Image showing the position of a macrobend once analysed by a portable OTDR with multi-pulse acquisition and analysis capabilities.

The test method is a one-end, single-unit testing method with the ability to provide clear diagnostics and discovered elements in a single view.

Comparing ORL measurements (Table 2), the maximum difference between the ORL meter and iOLM is 0,84 dB, which is small enough to locate any ORL problem.

Table 2. Table showing the different ORL test results.
Table 2. Table showing the different ORL test results.

So what is causing an ORL issue on the line?

This is caused by connector reflectance, but according to the ORL results, we are below the 32 dB threshold. Now, if we look at the results in Figure 6, we can see that there is one highly reflective connector that needs to be fixed (exceeds the -55 dB threshold).

Figure 5. Image showing the position of a macrobend once analysed by a portable OTDR with multi-pulse acquisition and analysis capabilities.
Figure 5. Image showing the position of a macrobend once analysed by a portable OTDR with multi-pulse acquisition and analysis capabilities.

This is what we are looking for when testing with an ORL meter (or OLTS) in both directions. We want to know the direction of the high ORL because that is where the high reflective connector is. Obviously, we would have missed it with the ORL meter or the OLTS, providing a clear advantage for the iOLM.

For more information contact Chris Nel, Lambda Test Equipment, +27 (0)12 349 1341, [email protected], www.lambdatest.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SIGLENT launches new 8 GHz DSO
Vepac Electronics Test & Measurement
SIGLENT has unveiled the enhanced SDS7000A/AP models, building on the success of its SDS7000A high-resolution digital oscilloscope series.

Read more...
Multi-functional high-res oscilloscopes
Coral-i Solutions Test & Measurement
RIGOL Technologies has launched two powerful additions to its oscilloscope portfolio that are tailored to meet the growing challenges of power electronics, automotive systems, and high-speed digital designs.

Read more...
TDK expands programmable PSU series
Accutronics Test & Measurement
With a 3U high chassis, the GAC and GAC-PRO provide extremely high-power density for a fully featured programmable AC power source.

Read more...
Analysing magnetic fields
Accutronics Test & Measurement
The engineers at Narda Safety Test Solutions have achieved a breakthrough in isotropic measurement and analysis of low-frequency magnetic fields in the form of their latest digital H-field probe.

Read more...
A new class of sampling scope
Comtest Test & Measurement
The PicoScope 9400A Series combines the huge analogue bandwidth of sampling oscilloscopes with the triggering architecture of real-time oscilloscopes.

Read more...
Single channel, programmable PSU
Electrocomp Express Test & Measurement
Rohde & Schwarz’ NGC101 is a NGC100-series power supply with a wide range of functions that make them ideal for use in development labs and industrial environments.

Read more...
Next-gen LineScan camera
Eagle Africa Technology Test & Measurement
New Imaging Technologies has launched the new LiSaSWIR, its next-generation SWIR LineScan camera and sensor.

Read more...
Ultra-portable spectrum analyser
Vepac Electronics Test & Measurement
The PXN-400Z from Harogic is a handheld spectrum analyser covering a frequency range of 9 kHz to 40 GHz with a 100 MHz analysis bandwidth.

Read more...
Why your next oscilloscope should be PC-based
Comtest Test & Measurement
For decades, traditional benchtop oscilloscopes have been a cornerstone of engineering, offering reliability, precision, and familiarity. However, as technology evolves, so do the tools we rely on.

Read more...
Versatile 3-in-1 instrument
Vepac Electronics Test & Measurement
The ARB Rider AWG-2000 is the cost-effective and powerful two or four channel arbitrary function generator and two or four channel arbitrary waveform generator with advanced sequencer functionality.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved