Test & Measurement

WDM network impairment detection tool

3 April 2013 Test & Measurement

Despite advances in modulation formats and equipment management systems offered with monitoring tools, faults, issues, delays and errors still occur all too frequently in wavelength-division multiplexing (WDM) networks.

When this happens, the optical spectrum analyser (OSA) is a tool of choice for identifying the issue, and helping to fix it.

However, as networks become more and more complex (tighter channel spacing, mesh and ROADM-based, polarisation-multiplexed signals, etc.) the number of potential causes for failure increases, making it extremely difficult to find the issue for a given failure. Most providers and vendors have developed their own best practices involving use of an OSA to locate the issue. Figure 1 shows a typical best-practice procedure.

Although this procedure works well, it is case-by-case dependent, and involves a certain level of knowledge of the system, some trial and error, and ultimately, a certain number of truck rolls, time and unavoidable extra OPEX.

Figure 1. Typical procedure using an OSA to locate a WDM network error.
Figure 1. Typical procedure using an OSA to locate a WDM network error.

WDM Investigator

EXFO’s next-generation optical spectrum analyser and software bring more than mere pass/fail values, and are designed to ensure efficient turn-up and maintenance of any network, by giving information on a per-wavelength basis on the link. In addition, the system tells users what could be causing high optical signal-to-noise ratio (OSNR) measurement when it occurs, since even good OSNR systems can generate unacceptable bit error rates (BER).

BER tests are long and as such, when they fail, there are huge cost implications. New systems can create noise that is not taken into account in traditional OSNR measurement, ie, power, less amplified spontaneous emission (ASE) noise. With EXFO’s WDM Investigator, users can carry out large-scale network prevention and maintenance before the latent issue becomes a problem.

Figure 2 shows a screen capture of WDM Investigator’s user interface. To perform WDM Investigator impairment testing, an i-in-band acquisition is required to ensure that 500 polarisation condition scans are carried out.

Figure 2. WDM Investigator software interface.
Figure 2. WDM Investigator software interface.

The WDM Investigator provides two types of feedback: link information and impairment detection. Table 1 outlines the details available in the link information. Three levels of information are given for link information diagnostics: no information available; detected as present; and clearly not present.

Table 1. Link information provided by WDM Investigator.
Table 1. Link information provided by WDM Investigator.

Impairment detection checks for the presence of several types of impairments and gives an assessment of their severity. This information is available for polarised signals only. When a signal is detected as pol-MUX, no diagnostic is provided. Table 2 describes all the impairments found in the WDM Investigator.

Table 2. Impairment detection information provided by WDM Investigator.
Table 2. Impairment detection information provided by WDM Investigator.

Four levels of information are provided for impairment diagnostics: no information available; good – no visible effect (below threshold); warning – some effect (threshold up to a level x); and risk – clear effect (above level x).

Most of these impairments frequently lead to an overestimation of the ASE level for polarisation-based in-band OSNR techniques. As such, correct identification of these impairments helps improve the ASE-level determination of polarisation-based techniques.


Standard OSAs can only determine whether a given channel was experiencing noise. Now, with the EXFO WDM Investigator software, an OSA can identify several types of impairments on a per-channel basis (PMD pulse spreading, non-linear depolarisation, interchannel crosstalk, carrier leakage, etc.), which provides greater visibility within a WDM network.

In addition, the WDM Investigator provides useful information on the link characteristics, such as the presence of polarisation-multiplexed signals or the presence of carved noise due to filters or ROADMs. The impairment identification and link characteristics both significantly help pinpoint the exact failure affecting a channel, thereby drastically reducing turn-up time and even helping to prevent future failures.

Link information and impairment detection terms

Pol-MUX signal

Pol-MUX (polarisation-multiplexed) signals are playing an increasing role in optical communications. Pol-MUX channels are often added onto existing networks, in which case system architects carefully ensure that the channel plan and link characteristics allow for its introduction.

Identification of pol-MUX channels and their relative positions on the channel plan may be useful when troubleshooting issues specific to pol-MUX, eg, non-linear degradations. Pol-MUX channel identification is also useful for confirming that channel routing is correct, ie, that a channel that is expected to be pol-MUX is indeed pol-MUX.

Also, since most in-band OSNR measurement techniques (all commercially available) rely on polarisation properties of the signal, a pol-MUX confirmation indicates that the OSNR, when provided by ‘standard’ polarisation-based techniques, will most likely not be accurate.

Carved noise

A check mark for carved noise may be useful in determining whether some of the channels have gone through a different optical route than their neighbours. Detecting the presence of carved noise also indicates that the IEC method for OSNR measurement is not appropriate for this channel because of the presence of filters/ROADMs in the signal path. If the signal is not pol-MUX, then the in-band OSNR method is ideal.

Non-linear induced depolarisation

Non-linear effects can lead to the partial depolarisation of a modulated signal in such a way that the depolarisation part is like optical power removed from the signal and added to the noise. Non-linear effects can generate bit errors, reducing the margin to the FEC limit if they become dominant.

When designing their links, system architects try to minimise these effects by managing the launched powers (distance between amplifiers and types of amplifiers), the channels spacing and relative positions (10G vs. 40G), and the dispersion map (also affecting amplifier deployment).

PMD pulse spreading

This impairment indicates the presence of PMD-induced pulse broadening for that channel, a phenomenon that depends on the fibre properties (and the properties of certain components in the path) as well as environmental stresses. Large PMD pulse spreading may explain why increased BER no longer correlates with the OSNR (ASE) of the system.

Interchannel crosstalk

When interchannel linear crosstalk is present in a given channel, the noise power within that channel is increased and, depending on the polarisation relation between the neighbouring channel and the channel of interest, the resulting beat noise may lead to increased BER, which would again no longer correlate with the OSNR (ASE) of the system.

Carrier leakage

Normally, transmitters are tested during manufacture to ensure a minimal carrier extinction ratio (eg, 20 dB), but in practice, some transmitters found in the field may exhibit insufficient extinction.

For more information contact Chris Nel, Lambda Test Equipment, +27 (0)12 349 1341, chris@lambdatest.co.za, www.lambdatest.co.za


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New range of Tektronix DSOs
30 June 2020, Comtest , Test & Measurement
Comtest has released Tektronix’s new TBS2000B series of digital storage oscilloscopes (DSOs) that was developed to meet the performance, usability and affordability needs of both engineers and educators. ...

Contactless ESD testing and access control unit
30 June 2020, Actum Group , Test & Measurement
In the electronics manufacturing industry, an electrostatic discharge (ESD) can cause irreparable damage to electronic components. This micro-lightning bolt can burn holes through insulating layers and ...

How are IR cameras calibrated and how does ambient temperature affect readings?
30 June 2020, Instrotech , Test & Measurement
Infrared thermometers are calibrated with the help of reference radiation sources, so-called ‘black bodies’. These radiant sources are able to produce different temperatures with a high stability.  ...

Thermal monitor for fever screening
30 June 2020, Actum Group , Test & Measurement
The TCSF256 thermal monitor from Actum Group is a fully automated, plug-and-play fever screening unit. It adopts an infrared radiation measurement technique that can measure body temperature by non-contact ...

Uncover EMI issues early with simple pre-compliance tests
30 June 2020, Concilium Technologies , Test & Measurement
An effective pre-compliance testing methodology will reduce test cycle times, which ultimately impacts a company’s bottom line.

The promise of 5G wireless communications
30 June 2020, Lambda Test , Test & Measurement
The deployment of 5G services worldwide is driving a massive increase in fibre densification for the required fronthaul and backhaul links interconnecting radio base stations and web-scale core packet networks.

Phase noise analyser for precision oscillator characterisation
29 April 2020, Altron Arrow , Test & Measurement
To help research and manufacturing engineers make precise and accurate measurement of frequency signals, including those generated by atomic clocks and other high-performance frequency reference modules ...

Ethernet tap for IO Ninja
25 March 2020, RF Design , Test & Measurement
Monitoring network communications of your PC can be accomplished without any specialised hardware – just use the Pcap Sniffer plugin of IO Ninja. The task of tapping into the Ethernet traffic of a non-PC ...

Bench-top vector signal generator
29 April 2020, RFiber Solutions , Test & Measurement
The T3267E series bench-top vector signal generator from Transcom Instruments has excellent radio frequency performance and rich signal generating function. It can provide arbitrary wave, continuous ...

Tektronix and Coherent Solutions partner for fully integrated optical comms
25 March 2020, Comtest , Test & Measurement
Comtest has announced that technology companies Tektronix and Coherent Solutions have an exclusive partnership agreement to provide fully integrated optical communications platforms to new and existing ...