News


A breakthrough in flexible optical links

2 April 2014 News

For futuristic applications like wearable body sensors and robotic skin, researchers need to ferry information along flexible routes.

Electronics that bend and stretch have become possible in recent years, but similar work in the field of optics – communicating with light instead of electrons – has lagged behind. Particularly difficult to engineer have been optics that stretch, lengthening when someone wearing body sensors bends to tie their shoe, or when a robotic arm twists through a full range of motion.

Now a team of Belgian researchers reports progress on this front with what may be the first optical circuit that uses interconnections that are not only bendable, but also stretchable. These new interconnections, made of a rubbery transparent material called PDMS (poly-dimethylsiloxane), guide light along their path even when stretched up to 30% and when bent around an object the diameter of a human finger.

Furthermore, by integrating these stretchy interconnections into a circuit – with a light source on one end and a detector on the other – the researchers created a miniature stretchable, bendable link that could be incorporated into optical communications systems. The team describes its work in a paper recently published in The Optical Society’s (OSA) open-access journal Optics Express.

The novel waveguide connects a light source to a detector to make what may be the first truly stretchable optical circuit.<br> <I>Credit: Centre for Microsystems Technology/imec/Ghent University.</I>
The novel waveguide connects a light source to a detector to make what may be the first truly stretchable optical circuit.
Credit: Centre for Microsystems Technology/imec/Ghent University.

“To our knowledge, this is indeed the first truly bendable, stretchable optical link with these miniature dimensions,” said lead author Jeroen Missinne of Ghent University and imec, a micro- and nano-electronics research centre in Belgium.

Previously, researchers had created optical interconnections – also called lightguides or waveguides – from other similar rubbery materials. But until now, the researchers say, no one had discovered a way to enable these materials to carry light while stretched. Past efforts also included embedding waveguides made of semi-rigid glass fibres into a stretchable substance. In the new method, the stretchable substance itself is the waveguide.

The new connector consists of two materials, both made of PDMS: a transparent core through which the light travels, surrounded by another transparent layer of PDMS with a lower refractive index, a characteristic of the material that describes how light moves through it. This configuration traps light in the guide’s core, causing it to propagate along its length.

Bending a waveguide beyond a certain point causes some of the light trapped in the core to escape, a process called optical loss. The Belgian team tested how far they could bend and stretch their new optical connector before too much light escaped.

The new optical circuit works when bent around an object about the diameter of a human finger.<br><I>Credit: Centre for Microsystems Technology/imec/Ghent University.</I>
The new optical circuit works when bent around an object about the diameter of a human finger.
Credit: Centre for Microsystems Technology/imec/Ghent University.

“We were surprised that stretching had so little influence on the waveguides and also that their mechanical performance was so good,” Missinne said. The guide’s reliability was also 'remarkable',” he said. The researchers did not see a degradation in the material even after mechanically stretching it to a 10% elongation 80 000 times.

But, Missinne said, “Waveguides are useless if you cannot launch light into them and collect light on the other end. If you want to obtain a truly stretchable optical link, the light sources and detectors need to be integrated together with the stretchable waveguide.”

In this case, a VCSEL (vertical-cavity surface-emitting laser), commonly used for fibre-optic communications, served as the light source, and a photodiode was the detector. This configuration allowed the team to create the first truly stretchable optical interconnector.

Future uses for the new optical link might include building networks of wearable body sensors, moving machine parts such as robotic limbs, and deformable consumer electronics. Meanwhile, the team plans to make their waveguide smaller, down from 50 micrometres to just a few micrometers in diameter, which will also require a redesign of the parts of the waveguide where light enters and exits.

This work was performed at the Centre for Microsystems Technology (CMST), a laboratory associated with imec and Ghent University.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved