mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

When is JESD204B the right choice?
16 July 2014, Programmable Logic

Anyone involved in high-speed data capture designs that use an FPGA has probably heard the buzzword for the new JEDEC standard: JESD204B. Recently a lot of engineers have contacted Texas Instruments requesting information on the JESD204B interface, including how it works with an FPGA and how it will make their designs easier to execute.

This article discusses the evolution of the JESD204B standard and what it means to a systems design engineer.

What led to the JESD204B standard?

About 10 years ago, designers of high-speed data converters switched from using the traditional single-ended CMOS interface to using a differential LVDS interface because the latter enabled higher data rates (the CMOS interface is limited to about 200 Mbps.)

The LVDS interface also improved noise coupling on signal lines and power supplies. The drawback of this interface was higher power consumption at lower sampling speeds. This gave the CMOS interface a reason for existence, and it is still being used today.

With the evolution of analog-to-digital converters (ADCs) requiring faster sampling rates and higher channel density, the industry was demanding a faster, more power-efficient digital interface than parallel LVDS. In order to overcome this challenge, a true serial interface called JESD204 was developed and approved by JEDEC in April 2006.

The JESD204 interface is defined as a single-lane, high-speed serial link connecting single or multiple data converters to a digital logic device with data rates of up to 3,125 Gbps. It needs a common frame clock sent to the converter and the FPGA to synchronise the frames.

Supporting only one lane and one serial link, JESD204 was soon viewed as not quite as useful as initially hoped, so in April 2008 the standard was revised to JESD204A. This extended support for multiple aligned lanes and multipoint links, but the maximum speed was still limited to 3,125 Gbps.

This drove the development in July 2011 of JESD204B, which promises to address several different system design challenges. Besides drastically increasing the supported data rates from 3,125 Gbps to 12,5 Gbps, it also greatly simplifies multichannel synchronisation by adding the deterministic latency feature.

What is the JESD204B standard?

JESD204B supports interface speeds of up to 12,5 Gbps, uses a device clock instead of the previously used frame clock, and has three different subclasses. Subclass 0 is backward compatible with JESD204A except at higher speeds, and it does not support deterministic latency.

Figure 1. JESD204B Subclass 0 interface.
Figure 1. JESD204B Subclass 0 interface.

Furthermore, the SYNC signal has special timing requirements for error reporting (Figure 1). Subclass 1 uses synchronisation signal SYSREF to initiate and align the local multi-frame clocks across devices (Figure 2). This synchronises data transmission and achieves a known, deterministic latency across the digital link.

Figure 2. JESD204B Subclass 1 interface.
Figure 2. JESD204B Subclass 1 interface.

Subclass 2 uses the SYNC signal for that same purpose (Figure 3). Due to SYNC timing constraints, Subclass 2 is typically employed for data rates lower than 500 MSps. For speeds higher than this, Subclass 1 with an external SYSREF clock is commonly preferred.

Figure 3. JESD204B Subclass 2 interface.
Figure 3. JESD204B Subclass 2 interface.

JESD204B-compliant receivers are outfitted with an elastic buffer that is used to compensate for skew across serialiser/deserialiser (SerDes) lanes, which simplifies board layout. This elastic buffer stores the data until the data from the slowest lane arrives, at which time it releases the data from all lanes simultaneously for digital processing.

This skew management is possible because the data clock is embedded in the serial data stream.

Why care about the JESD204B interface?

Since JESD204B-compliant data converters serialise and transmit output data at a much higher rate than with previous interfaces, the number of pins required on the data converters as well as on processors or FPGAs is drastically reduced, translating to smaller package sizes and lower cost. However, the biggest benefits from the reduced pin count may be a much simpler layout on the printed circuit board (PCB) and easier routing because there are much fewer lanes on the board.

Layout and routing are further simplified by the reduced need for skew management, which is made possible by the data clock now being embedded in the data stream and the presence of the elastic buffer in the receiver. Hence, the need for trace squiggles to match lengths is eliminated.

The JESD204B standard also allows longer transmission distances. Relaxed skew requirements enable logic devices to be placed much farther from data converters to avoid any impact on sensitive analog parts. Additionally, the JESD204B interface is adaptable to different resolutions of data converters. This removes the need for physical redesign of transceiver/receiver (Tx/Rx) boards (logic devices) for future ADCs and digital-to-analog converters (DACs).

Does this mean the end for the LVDS interface?

The CMOS interface provides lower power consumption for data converters with lower data rates, while the JESD204B interface offers a few benefits over the traditional LVDS interface. So does the LVDS interface have any chance of survival?

The simple answer is yes. While the JESD204B standard has simplified multichannel synchronisation by using deterministic latency, there are applications that require minimal latency (and, in an ideal world, no latency). These applications (for example, aerospace applications like radar) need an immediate response to an action or detection; any possible delay must be minimised. For these applications, the LVDS interface should be considered, since the JESD204B-compliant data converter’s delay in serialising the data is omitted.

For more information contact Erich Nast, Avnet Kopp, +27 (0)11 319 8600, erich.nast@avnet.eu, www.avnet.co.za


Credit(s)
Supplied By: Avnet South Africa
Tel: +27 11 319 8600
Fax: +27 11 319 8650
Email: sales@avnet.co.za
www: www.avnet.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • eSPI-to-LPC bridge
    26 June 2019, Avnet South Africa, Computer/Embedded Technology
    Microchip Technology’s new ECE1200 bridge allows developers to implement the eSPI standard in boards with legacy LPC connectors and peripherals. Product longevity is critical in industrial computing ...
  • Designing certified power solutions for LED lighting
    26 June 2019, Avnet South Africa, Power Electronics / Power Management
    LED lighting has become the product of choice in all types of environments, from domestic to industrial through to specialist areas such as stage lighting. The combination of efficiency in terms of lumens ...
  • Automotive smart hub ICs
    26 June 2019, Avnet South Africa, Telecoms, Datacoms, Wireless, IoT
    Microchip Technology has added new single-port USB smart hub ICs to its family of USB automotive products. The USB4912 and the USB4712 can be used to add a single port under the radio, in the centre console ...
  • Passive RFID using UHF delivers long-range benefits in the IoT
    29 May 2019, Avnet South Africa, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    In order to support the use of UHF RFID as an IoT solution, a global alliance was formed in 2014 by Google, Intel, Impinj, Smartrac and AIM.
  • Wi-Fi and Bluetooth module
    29 May 2019, Avnet South Africa, Telecoms, Datacoms, Wireless, IoT
    Murata Manufacturing has collaborated with Cypress Semiconductor to develop the Type 1LV (CYW43012) low-power, small form factor Wi-Fi and Bluetooth module. This product is designed to improve battery ...
  • Dual- and single-core DSCs
    29 May 2019, Avnet South Africa, DSP, Micros & Memory
    New dual- and single-core dsPIC33C digital signal controllers (DSCs) have been released by Microchip Technology, with more options to meet changing application requirements across memory, temperature ...
  • AC-DC linear regulator
    29 May 2019, Avnet South Africa, Power Electronics / Power Management
    Texas Instruments expanded its portfolio of linear regulators by introducing the TPS7A78, which uses a unique switched-capacitor architecture to eliminate discrete components, including external inductors ...
  • Aluminium profile enclosures
    29 May 2019, Avnet South Africa, Enclosures, Racks, Cabinets & Panel Products
    In addition to its wide range of plastic enclosures, OKW also offers elegant aluminium enclosures. The two product groups, Synergy and Smart-Terminal, feature good stability, heat dissipation and a high-quality ...
  • 5G – the slicing and dicing of IoT?
    29 May 2019, Avnet South Africa, Telecoms, Datacoms, Wireless, IoT
    The new buzzword in the wireless industry is 5G, and it is often used in relation to the Internet of Things (IoT). This has contributed to some confusion as IoT has been broadly gaining traction in the ...
  • Connectors 101 for lighting designers
    30 April 2019, Avnet South Africa, Interconnection
    Selecting the best connector for a lighting application is a matter of matching application requirements to available connectors, with proper consideration given to performance and costs.
  • Floating board-to-board connectors
    30 April 2019, Avnet South Africa, Interconnection
    Molex launched the SlimStack 0,40 mm floating board-to-board connectors, designed to save space and allow for design flexibility. These new connectors are one of the smallest of their kind in the market, ...
  • Samtec débuts compact mPOWER connector series
    30 April 2019, Avnet South Africa, Interconnection
    Samtec’s new mPOWER connectors offer enhanced space savings and design flexibility. This 2,00 mm pitch system (UMPT/UMPS) can pass 21 A per blade while freeing up the board for other components or minimising ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.