Power Electronics / Power Management


The importance of cell balancing in Li-ion battery packs

27 August 2014 Power Electronics / Power Management

We’ve all heard the saying ‘a chain is only as strong as its weakest link’, and never has this been more relevant than when used to describe lithium ion cells connected in multi-cell battery packs.

When lithium ion (or lithium polymer) battery packs are built with multiple cells connected in series, cell balancing becomes an absolute necessity, both from a performance and safety point of view. In order to better understand this need for cell balancing, the workings of the obligatory protection circuit module (PCM), which is fitted to any lithium ion battery, must be understood.

The PCM is designed as an external safeguard whose primary function is to protect both battery and user from catastrophic failure, which could include explosion and/or fire. To ensure their safe usage, lithium ion cells are required to operate within very strict voltage parameters. Depending on the manufacturer and the exact chemical makeup of the cell, that voltage parameter could be anything between 2,5 V and 4,2 V per cell. The PCM is there to control these voltage parameters, and disconnect the cell or battery if they are exceeded.

A basic cell balancing circuit. Image courtesy of Texas Instruments.
A basic cell balancing circuit. Image courtesy of Texas Instruments.

This is very simple in the case of a single cell (or parallel connected battery pack) since the PCM is only monitoring the voltage of that single cell. However, multiple cells connected in series pose a completely new challenge. The multi-cell PCM is designed to monitor the voltage of each cell in the series string, independently. When any one of these cells exceeds the voltage parameters, the PCM will disconnect.

For example, in the case of a four-cell series connected lithium ion battery, during the charge cycle, should any one of the cells reach its upper voltage threshold, the PCM will automatically disconnect, thereby terminating the entire charging process, regardless of the state of charge of the other three cells.

Depending on the disparity in the voltages of the cells used in the multi-cell battery pack, this situation could potentially result in a battery pack never reaching full charge, thereby hampering the performance and expected runtime of the battery powered application.

Similarly, during discharge, should any of the four cells reach its lower voltage threshold, the PCM will again disconnect the load and terminate the discharge process, regardless of the states of the other three cells. In other words, a battery pack will only perform as well as its weakest cell.

The most obvious solution to this situation would be to ensure that cells are all equally balanced before assembling into a multi-cell battery pack (commonly known as ‘matching’). This is indeed true, but even the most reputable cell manufacturers have slight tolerances in their manufacturing processes, resulting in slight differences from one cell to another – even if they come from the same batch.

In addition, there are a number of factors which can affect lithium ion cells over their lifetime (uneven temperature distribution, for example) and lead to further disparity between the cells, and eventual imbalance during operation. In order to avoid this imbalance between cells, the use of cell balancing circuitry is highly recommended when designing multi-cell lithium ion battery packs.

Cell balancing circuits are designed to divert some of the current around an almost fully charged cell whilst keeping the others charging at their full charge rate – thus, the ‘weaker’ cells get replenished at a higher rate than the stronger ones, until eventually they are all fully charged. In so doing, all cells within the battery pack will be allowed to reach full charge and should remain far more closely matched than they ever would have without a balancing circuit. This will result in optimal performance of a multi-cell battery pack.

When an application demands longer service life and optimal performance from a lithium ion battery pack, cell balancing should definitely be considered when designing the battery.

For more information contact Michael Rogers, Uniross Batteries, +27 (0)11 466 1156, [email protected], www.uniross.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.

Read more...
New SiC power MOSFET
Future Electronics Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.

Read more...
Fundamental motor control design challenges and solutions
Power Electronics / Power Management
Mouser Electronics has announced a new eBook in collaboration with Qorvo, featuring industry experts providing key insights into methods, power efficiency and integration solutions available for motor control applications.

Read more...
Power management IC for battery products
Power Electronics / Power Management
The nPM1304 PMIC complements Nordic’s nPM1300 PMIC with a highly integrated, ultra-low power solution and precision fuel gauging for small size battery applications.

Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved