Telecoms, Datacoms, Wireless, IoT


Open IoT standard for network carriers

14 October 2015 Telecoms, Datacoms, Wireless, IoT News

The LoRaWAN R1.0 specification recently attained public release status and is now available to download from the LoRa Alliance website.

The alliance and its members, which include many industry leaders and mobile network operators, see this as a major step towards international standardisation in LPWAN (Low Power Wide Area Network), catalysing network deployments and certified sensor manufacturing around the world.

The alliance members have collaborated, sharing knowledge and experience and intensively testing the LoRaWAN R1.0 specification to ensure readiness for the entire ecosystem. It is hoped this will drive the global success of the LoRaWAN LPWANs and guarantee interoperability in one open, carrier-grade global network.

LoRaWAN network architecture is a typical star-of-stars topology in which the gateways are a transparent bridge relaying messages between end-devices and a central network server. Gateways are connected to the network server via standard IP connections, while end-devices use single-hop wireless communication to one or many gateways.

All end-point communication is generally bidirectional, with support for multicast, enabling software upgrade over-the-air, and other mass message distribution, to reduce the ‘on air’ communication time. Communication between end-devices and gateways is distributed via different frequency channels and data rates. The selection of channel and data rate is a trade-off between communication range and message payload. LoRaWAN data rates range from 0,3 Kbps to 50 Kbps.

To maximise the battery life of end-devices, network capacity and ease of deployment, and to easily scale, the LoRaWAN network server manages the data rate for each connected sensor via an adaptive data rate algorithm. This unique optimisation is based on advanced information such as SNR, RSSI, PER and channels to ensure optimal performance under local radio conditions.

National LPWAN’s for the Internet of Things (IoT) have strict requirements in terms of security for each individual user and typically require local hosting. To ensure this for the user, the application or the network owner LoRaWAN includes a unique network key to ensure security at the network level, a unique application key to ensure end-to-end security at the application level, and a device specific key.

LoRaWAN has several classes of end-point devices to address the very different requirements of almost any kind of IoT application:

Bi-directional end-devices (Class A): End-devices of Class A allow for bidirectional communications whereby each end-device’s uplink transmission is followed by two, short downlink receive windows. The transmission slot scheduled by the end-device is based on its own communication needs with a small variation based on a random time basis (ALOHA-type protocol). This Class A operation is the lowest power end-device system for applications that only require downlink communication from the server shortly after the end-device has sent an uplink transmission. Downlink communications from the server are queued automatically until the next scheduled uplink.

Bi-directional end-devices with scheduled receive slots (Class B): In addition to the Class A random receive windows, Class B devices open extra receive windows at scheduled times. In order for the end-device to open its receive window at the scheduled time it receives a time synchronised beacon from the gateway; this allows the server to know when the end-device is listening.

Bi-directional end-devices with maximal receive slots (Class C): End-devices of Class C have nearly continuously open receive windows, only closed when transmitting.

For more information visit www.loraalliance.org





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved