News


Wits researchers demonstrate quantum teleportation of light

15 November 2017 News Electronics Technology

Quantum communication over long distances is seen as the future of information security and has been demonstrated in free space and fibre with two-dimensional states, recently over distances exceeding 1200 km between satellites. But using only two states reduces the information capacity of the photons, so the link is secure but slow. To make it secure and fast requires a higher-dimensional alphabet, for example, using patterns of light, of which there are an infinite number. One such pattern set is the orbital angular momentum (OAM) of light.

Increased bit rates can be achieved by using OAM as the carrier of information. However, such photon states decay when transmitted over long distances, for example due to mode coupling in fibre or turbulence in free space, thus requiring a way to amplify the signal. Unfortunately, such ‘amplification’ is not allowed in the quantum world, but it is possible to create an analogy, called a quantum repeater, akin to optical fibre repeaters in classical optical networks.

Figure 1. The core element of the quantum repeater is a cube of glass. The researchers put two independent photons in, and as long as they could detect two photons coming out the other side they knew that they could perform entanglement swapping.
Figure 1. The core element of the quantum repeater is a cube of glass. The researchers put two independent photons in, and as long as they could detect two photons coming out the other side they knew that they could perform entanglement swapping.

An integral part of a quantum repeater is the ability to entangle two photons that have never interacted – a process referred to as entanglement swapping. This is accomplished by interfering two photons from independent entangled pairs, resulting in the remaining two photons becoming entangled. This allows the establishment of entanglement between two distant points without requiring one photon to travel the entire distance, thus reducing the effects of decay and loss. It also means that a line of sight is not necessary between the two places.

Figure 2. An alphabet of OAM modes. OAM modes are sometimes called twisted light as the light appears as a ring with a vortex in the middle. The light can be twisted once, twice, three times and so on to create a high-dimensional alphabet.
Figure 2. An alphabet of OAM modes. OAM modes are sometimes called twisted light as the light appears as a ring with a vortex in the middle. The light can be twisted once, twice, three times and so on to create a high-dimensional alphabet.

An outcome of this is that the information of one photon can be transferred to the other, a process called teleportation. Like in the science fiction series, Star Trek, where people are ‘beamed’ from one place to another, information is teleported from one place to another. If two photons are entangled and the value of one of them is changed, the other one automatically changes too. This happens even though the two photons are never connected and, in fact, are in two completely different places.

Figure 3. A schematic of the experiment. Four photons are created, one pair from each entanglement source (BBO). One from each pair (B and C) are brought together on a beam splitter. When all four photons are measured together one finds that photons A and D, which previously were independent, are now entangled.
Figure 3. A schematic of the experiment. Four photons are created, one pair from each entanglement source (BBO). One from each pair (B and C) are brought together on a beam splitter. When all four photons are measured together one finds that photons A and D, which previously were independent, are now entangled.

In this latest work, the team performed the first experimental demonstration of entanglement swapping and teleportation for orbital angular momentum (OAM) states of light. They showed that quantum correlations could be established between previously independent photons, and that this could be used to send information across a virtual link. Importantly, the scheme is scalable to higher dimensions, paving the way for long-distance quantum communication with high information capacity.

Figure 4. An experiment being conducted in the Structured Light Laboratory at Wits University.
Figure 4. An experiment being conducted in the Structured Light Laboratory at Wits University.

For more information contact Schalk Mouton, Wits University, +27 (0)11 717 1017, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved