News


SKA confirms synchronisation system designs

31 January 2018 News

One of the most critical and challenging design aspects of the Square Kilometre Array (SKA) radio telescope project, namely time synchronisation, came a step closer to resolution recently when the board of the SKA’s international Signal and Data Transport (SaDT) consortium selected the synchronisation distribution system designs to be used for both SKA telescopes, endorsing the decision of a panel of leading experts in the field of time synchronisation.

While optical fibres are incredibly stable and suited to transport data, mechanical stresses and thermal changes do affect the fibre, degrading the stability of the transmitted signals over long distances. The long distances between the SKA antennas means radio waves from the sky reach each antenna at different times. With eventually thousands of antennas spread over continental scales and therefore thousands of kilometres of fibre, one of the most complex technical challenges for the SKA to function properly is to make sure the signals from the antennas are aligned with extreme precision to be successfully combined by the SKA’s supercomputers.

Left: Synchronisation distribution system designed by ICRAR selected for SKA-mid dishes in South Africa. Right: Synchronisation distribution system designed by Tsinghua University selected for SKA-low antennas in Australia.
Left: Synchronisation distribution system designed by ICRAR selected for SKA-mid dishes in South Africa. Right: Synchronisation distribution system designed by Tsinghua University selected for SKA-low antennas in Australia.

“Given the scale of the SKA, this is an engineering problem that hadn’t really been faced before by any astronomical observatory,” said André Van Es, the SaDT engineering project manager supervising the consortium’s work for SKA Organisation (SKAO).

To achieve this level of precision or ‘coherence’ across the array, the SKA requires a synchronisation distribution system that supresses these fibre fluctuations in real time. “The performance required is for less than 2% coherence loss. Bearing in mind a 1% loss is equivalent to losing two dishes or antenna stations, it’s crucial that we get this right for the telescopes to be effective,” explained SKAO timing domain specialist Rodrigo Olguin.

A subrack enclosure used to hold 16 of the 197 transmitter modules for the SKA-mid phase synchronisation system. One prototype transmitter module is shown partly extended from the front of the enclosure, revealing details of the system’s critical fibre-optic components.
A subrack enclosure used to hold 16 of the 197 transmitter modules for the SKA-mid phase synchronisation system. One prototype transmitter module is shown partly extended from the front of the enclosure, revealing details of the system’s critical fibre-optic components.

The pulses sent by the synchronisation distribution system travel to each antenna using the optical fibre network also used for transporting astronomical data to the SKA’s central computer. The system then takes into account the mechanical stresses and thermal changes in the fibre and corrects the timing difference to make sure all signals coming from the antennas are digitised synchronously.

An optical fibre-based synchronisation distribution system designed by a team from the International Centre for Radio Astronomy Research (ICRAR) in Perth was selected for the SKA-mid dishes in South Africa, and a system designed by Tsinghua University in Beijing for the SKA-low antennas in Australia. “This decision based on the SKA’s requirements combines both cost-effectiveness and reliability of the designs, resulting in an optimal two-system solution for the telescopes,” explained Van Es.

Main card and transmitting card of a module from the frequency dissemination system designed by Tsinghua University for the 
SKA-low telescope.
Main card and transmitting card of a module from the frequency dissemination system designed by Tsinghua University for the SKA-low telescope.

According to Dr Sascha Schediwy from ICRAR and the University of Western Australia, ICRAR’s frequency synchronisation system continuously measures changes in the fibre link and applies corrections in real-time with fluctuations of no more than five parts in one-hundred trillion over a 1-second period. To put that in perspective, he points out that a clock relying on a signal of that stability would only gain or lose a second after 600 000 years.

Dr. Bo Wang of Tsinghua University explains: “Our system employs a frequency dissemination and synchronisation method that features phase-noise compensation performed at the client site. One central transmitting module can thus be linked to multiple client sites, and future expansion to additional receiving sites can be realised without disrupting the structure of the central transmitting station.”

The very accurate timing and synchronisation systems will enable the SKA to contribute to many fields, from mapping the distribution of hydrogen in the universe over time to studying pulsars and detecting gravitational waves on a galactic scale, making it complementary to the LIGO and VIRGO gravitational wave observatories. “The technologies behind these synchronisation systems are also likely to find applications beyond astronomy. Think about currency trading, which requires extreme accuracy in transactions,” added Van Es.

For more information visit www.skatelescope.org





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Buy a Fluke, get one free
28 October 2020, Comtest , News
Comtest, Fluke’s official South African importer, is offering one free Fluke for every Fluke purchased from any South African-based, authorised Fluke dealer. Fluke is a world leader in the manufacture, ...

Read more...
Online Ohm’s law calculator from Mouser
28 October 2020 , News
The famous Ohm’s law states that the current flowing through a circuit is proportional to the voltage applied across both points. Mouser Electronics’ online Ohm’s law calculator saves engineers time by ...

Read more...
From the editor's desk: Where monsters, viruses and technology meet
25 November 2020, Technews Publishing , News
I clearly remember the moment it really sank in that the world as we know it has become almost unrecognisable from a year ago. It would be hard not to remember really, because it happened only two days ...

Read more...
Clearing the Static: ESD training and compliance
25 November 2020, Actum Group , News
According to Desco Industries, electrostatic discharge (ESD) can change the electrical characteristics of a semiconductor device, degrading or destroying it entirely. ESD could also potentially damage ...

Read more...
SA project receives international energy award
25 November 2020 , News
South Africa’s largest energy efficiency initiative, the SA Industrial Energy Efficiency Project, has won the highest international accolade for an energy programme – the International Energy Project ...

Read more...
Intelsat brings space STEM to students in Africa
25 November 2020 , News
Intelsat is partnering with XinaBox to deliver space-focused science, technology, engineering and mathematics (STEM) learning tools to teenagers across the African continent. Intelsat is sponsoring ...

Read more...
DesignSpark racks up one million members
25 November 2020 , News
RS Components recently marked a significant milestone when its DesignSpark engineering platform surpassed one million members. This comes just a few months after DesignSpark celebrated ten years of ...

Read more...
Personality profile: Dereck Styane
25 November 2020, Phoenix Contact , Editor's Choice, News
“We do try and develop people and promote them from within the company, so I savour people’s personal growth that I’ve overseen.”

Read more...
MTN and Siyavula enabling maths and science learners
25 November 2020 , News
Lockdown or no lockdown, South African learners will do what it takes to ensure that they are ready for their year-end exams. So says the MTN SA Foundation, which partnered with digital teaching and learning ...

Read more...
Production Logix appoints new business development manager
25 November 2020, Production Logix , News
KwaZulu-Natal based electronics contract manufacturer, Production Logix, is broadening its scope and sharpening its focus as it expands its footprint across South Africa and into southern Africa. As part ...

Read more...