Telecoms, Datacoms, Wireless, IoT


TraX invests in RF and high-speed digital PCB capability

15 August 2018 Telecoms, Datacoms, Wireless, IoT

As technology advances annually, so do the laminates and materials used in the manufacture of printed circuit boards. These new laminates each bring different challenges during the manufacturing process due to their chemical composition and the specialised electrical properties they are designed to achieve. Many of these laminates require special processing and special equipment, especially the PTFE low-loss materials utilised in radar and RF applications. The modern challenges involved have led TraX Interconnect to add an MEC V-Bond process to its list of capabilities.

“Working with these new laminates and materials, particularly when it comes to soldermask application and innerlayer bonding, has meant investing in the new generation of chemical adhesion promoters,” explains TraX managing director, Daniel Dock. “In high-frequency printed circuit boards the surface roughness of the copper surface becomes an important factor affecting performance of the finished board. Current adhesion promoting treatments leave a surface that is too rough for high-frequency signals.”

Traditionally as part of the manufacturing process of a printed circuit board, a polymer ink (soldermask), most often green in colour, is applied to the circuit board to cover the copper traces of the circuit that do not require soldering. The purpose of the soldermask is to provide an electrically non-conductive, protective layer over the copper traces that make up the electronic circuit. Failure to protect these traces will result in oxidation of the copper and cause damage to the circuit.

If the surface of the copper traces being covered by soldermask is not suitably prepared then the soldermask will peel off and not stick to the copper surface. This can be equated to traditional surface preparation of most surfaces prior to painting.

“In printed circuit board manufacturing, much like painting preparation, we used to rely on abrading of the surface to be covered by soldermask,” Dock continues. “This was done by passing the printed circuit boards through conveyorised equipment containing round abrasive rollers that press down on the board surface as they pass between them. This can be compared to sanding before painting, with the resultant fine scratches in the copper surface making it possible for the soldermask to stick.

“The problem with this process is that the scratches on the copper traces are a problem in boards manufactured to operate at high frequencies, since these scratches affect the signals running at high speed across them. By implementing this new surface treatment at TraX we will be able to ensure that we provide sufficient adhesion for solder mask whilst leaving the copper surface as smooth as possible.”

Dock concludes by saying he is confident this new process puts TraX in a better position to manufacture boards for radar, aerospace and military applications where controlled impedance and high frequencies are critical factors.

For more information contact TraX Interconnect, +27 21 712 5011, [email protected], www.trax.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved