Test & Measurement


Trends in oscilloscope technologies

10 October 2018 Test & Measurement

The faster and more complex electronic circuits become, the greater the performance requirements are for the equipment with which to test and verify their performance. At the same time, the smartphone revolution has elevated users’ expectations in terms of ease of use and versatility. We asked Jason Strydom, account manager at Comtest, to elaborate on some of the ways in which oscilloscope technologies are advancing to keep pace with these demands.

What are some of the latest features in user interfaces?

The user interface is one of the biggest changes more recently, with a move towards larger touchscreens and USB-based devices. Larger touchscreens are now coming in high definition with true design for touch. This improves the sensitivity of the touchscreen and allows the user to more accurately control what they need to on it.

There is also a trend with light-up buttons on the device which change colour depending on which channel is selected. This ensures that the user knows which channel he is taking his measurement on or adjusting the settings for.

USB-based oscilloscopes, on the other hand, are bringing this functionality at a lower cost as they are able to interface to an already existing PC with a monitor for greater control compared to the previous instruments in the industry.

These options now make using these devices more ergonomic and allow the user to reference and control the instrument more easily so they can get their desired measurements faster, and save time during the design and development cycle.

What must engineers consider with regards to data interfaces?

Interfaces are all about what you want to do with the data or instrument. USB connection has become a great way to get your data locally and fast; this is useful if you want to use RF software on a PC coupled to the oscilloscope.

Alternatively, if users require remote connection then an IP connection can be very useful for controlling the instrument over a network (e.g. someone in their office being able to control an instrument that is in the lab). Additionally, for a Windows-based device, a video output port could be considered to incorporate multitasking on the device.

GPIB, among other interfaces, can be used to incorporate the device into an automated test system. PXI is an open standard that only a few vendors support, and is typically used where users need to incorporate multiple different types of high-speed instruments (not just an oscilloscope) into a particular system.

How are bandwidth and channel counts keeping pace?

We are seeing bandwidth upgrades and higher channel counts on mid-range instruments, indicating the mid-range is shifting upwards. We now have options for up to 8 channels on a single device, something that hasn’t been common until recently.

We also have the ability to synchronise multiple instruments, should the user need more than 8 high-speed measurement channels. Additionally, there are options to upgrade the standard bandwidth on many devices, even after the device has been acquired by an end user.

What other features are engineers looking for?

There are a few standard criteria that users should always be on the lookout for, such as bandwidth at least 5 times faster than signal speed, sample rate at least 5 times faster than your signal, and enough input channels

It is also important to consider having compatible probes of the right type (passive probes, active probes, current probes, near-field probes for RF, or even high-speed probes with a solder connection onto the board to be tested). Accessories (transit cases, software for in-depth analysis, adaptors, preamplifiers or even interposers), easy operation, connectivity, serial bus decoding, and in-country support are also important factors.

Additional features that users should be looking for are integration of time and frequency domain (RF) analysis on a single device, visual triggering, power measurements, built-in demonstration files so the user can see how to easily set up their acquisition, and the ability to mount network drives on non-Windows oscilloscopes.

For more information contact Jason Strydom, Comtest, +27 10 595 1821, [email protected], www.comtest.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SIGLENT launches new 8 GHz DSO
Vepac Electronics Test & Measurement
SIGLENT has unveiled the enhanced SDS7000A/AP models, building on the success of its SDS7000A high-resolution digital oscilloscope series.

Read more...
Multi-functional high-res oscilloscopes
Coral-i Solutions Test & Measurement
RIGOL Technologies has launched two powerful additions to its oscilloscope portfolio that are tailored to meet the growing challenges of power electronics, automotive systems, and high-speed digital designs.

Read more...
TDK expands programmable PSU series
Accutronics Test & Measurement
With a 3U high chassis, the GAC and GAC-PRO provide extremely high-power density for a fully featured programmable AC power source.

Read more...
Analysing magnetic fields
Accutronics Test & Measurement
The engineers at Narda Safety Test Solutions have achieved a breakthrough in isotropic measurement and analysis of low-frequency magnetic fields in the form of their latest digital H-field probe.

Read more...
A new class of sampling scope
Comtest Test & Measurement
The PicoScope 9400A Series combines the huge analogue bandwidth of sampling oscilloscopes with the triggering architecture of real-time oscilloscopes.

Read more...
Single channel, programmable PSU
Electrocomp Express Test & Measurement
Rohde & Schwarz’ NGC101 is a NGC100-series power supply with a wide range of functions that make them ideal for use in development labs and industrial environments.

Read more...
Next-gen LineScan camera
Eagle Africa Technology Test & Measurement
New Imaging Technologies has launched the new LiSaSWIR, its next-generation SWIR LineScan camera and sensor.

Read more...
Ultra-portable spectrum analyser
Vepac Electronics Test & Measurement
The PXN-400Z from Harogic is a handheld spectrum analyser covering a frequency range of 9 kHz to 40 GHz with a 100 MHz analysis bandwidth.

Read more...
Why your next oscilloscope should be PC-based
Comtest Test & Measurement
For decades, traditional benchtop oscilloscopes have been a cornerstone of engineering, offering reliability, precision, and familiarity. However, as technology evolves, so do the tools we rely on.

Read more...
Versatile 3-in-1 instrument
Vepac Electronics Test & Measurement
The ARB Rider AWG-2000 is the cost-effective and powerful two or four channel arbitrary function generator and two or four channel arbitrary waveform generator with advanced sequencer functionality.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved