Power Electronics / Power Management


UPS battery configuration made easy

28 August 2019 Power Electronics / Power Management

Determining the UPS (uninterruptible power supply) battery configuration using a formula can be quite complicated and, since many users are not very familiar with it, a more simplified method can be used to speed up the process and thereby save time.

This is typically done in the pre-planning phase before designing the practical application solution. The battery configuration can be quickly and simply calculated based on the UPS output load and the required backup time. The formula is as follows:Required battery capacity (Ah) = UPS capacity (kVA) x 109 (Ah/cell) + kVA + number of battery blocks per group

Example 1

As an example, consider a 130 V d.c. system of 120 kVA operating a UPS with 32 cells in series per bank, and requiring a backup time of 60 minutes. The required battery capacity is:

120 kVA x 109 Ah (cell/kVA) = 13 080 Ah (total requirement)

13 080 Ah / 32≈409 Ah

Therefore, if using a 12 V, 100 Ah battery bank x 4, there is a choice between using 32 cells per group, in which case the actual backup time will be less than 60 minutes, or 33 cells per group, resulting in a backup time of slightly more than 60 minutes.

If the required backup time is 30 minutes, then:

120 x 109 = 13 080 Ah

13 080 / 32≈409 Ah (for 60 minutes)

409 / 2≈205 Ah

However, since the discharge power and discharge time of the battery are not linear, simply dividing by 2 is incorrect; rather, a modified coefficient must be used (see Table 1). Therefore, in this case, 205 x 1,23≈252 Ah, so one option could be 4 banks (32 cell/bank) of 12 V, 65 Ah battery.

If the backup time requirement is 20 minutes, then:

120 x 109 = 13 080 Ah

13 080 / 32≈409 Ah (for 60 minutes)

409 / 3≈136 Ah

136 x 1,41 (modified coefficient) 192 Ah

Therefore, one option could be 3 banks (32 cells/bank) of 12 V, 65 Ah batteries.

Example 2

Consider a 126 Ah/cell/kVA system, of 120 kVA UPS with 32 cells per bank. If the required backup time is more than one hour you also need to consider the modified coefficient in the calculation (see Table 2).

If the required backup time is 3 hours, then:

126 x 120 = 15 120 Ah

15 120 / 32≈472 Ah

472 x 3 = 1 416 Ah (for 3 hours)

Then divide it by a modified coefficient as 1 416 / 1,25≈1 133 Ah

The option of 4 banks of 12 V, 300 Ah batteries can therefore be selected.

According to the principle of energy conservation, the above method is the same for three-phase/single-phase or single-phase/single-phase UPS. Generally, high-power UPS systems are equipped with 32 batteries per battery pack and the number of parallel batteries should not exceed 4 so as not to affect the current sharing and charging effect of the battery pack.

However, the above is a simplified method that is only a rough calculation where the result which is not completely accurate. To obtain a more accurate result, one will also need to consider the parameters of the equipment, the requirements of the application, the power grid condition and the power conversion efficiency.

For more information contact Forbatt SA, +27 11 469 3598, sales@forbatt.co, www.forbatt.co/index.php



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

DC-DC converters for railway applications
29 January 2020, Conical Technologies , Power Electronics / Power Management
Traco Power announced the release of the latest addition to its railway series converters. The THN 10WIR series is a family of ruggedised 10 Watt DC-DC converters for the highest reliability in harsh ...

Read more...
Highly robust IGBT gate driver
29 January 2020 , Power Electronics / Power Management
Power Integrations announced the launch of its automotive-qualified SID1181KQ SCALE-iDriver gate driver for 750 V-rated IGBTs. The new part expands the company’s range of auto-qualified driver ICs, following ...

Read more...
Power management/UPS HAT for Raspberry Pi
29 January 2020, iCorp Technologies , Power Electronics / Power Management
This Raspberry Pi power management and UPS HAT, made by Sixfab, ensures that the device is powered up and that the user has full control over its power supply. The uninterruptible power supply automatically ...

Read more...
Brushless DC motor driver
29 January 2020, NuVision Electronics , Power Electronics / Power Management
The MP6650 from Monolithic Power Systems is a single-phase, brushless DC motor driver with integrated power MOSFETs and a Hall-effect sensor. The device drives single-phase brushless DC fan motors with ...

Read more...
4-switch buck-boost controller
29 January 2020, Altron Arrow , Power Electronics / Power Management
A common DC-DC converter problem is generating a regulated voltage when the input voltage can be above, below, or equal to the output - that is, the converter must perform both step-up and step-down functions. ...

Read more...
CCM/DCM flyback ideal diode
29 January 2020, NuVision Electronics , Power Electronics / Power Management
The MP9989, made by Monolothic Power Systems, is a fast turn-off, intelligent rectifier for flyback converters that integrates a 100 V MOSFET. It can replace a diode rectifier for higher efficiency and ...

Read more...
Low-noise electronic circuitry enables low-intensity light detection
29 January 2020, Vepac Electronics , Editor's Choice, Power Electronics / Power Management
When it comes to low-intensity light detection, performance requirements often lead to selecting devices with greater sensitivity than common photodiodes or even charge coupled devices (CCDs).

Read more...
Non-isolated buck-boost converter
29 January 2020, Brabek , Power Electronics / Power Management
The recently introduced Recom RBBA3000 buck-boost, non-isolated DC-DC converter features a maximum 3 kW output power rating in an industry standard half-brick baseplate-cooled package. Input range is ...

Read more...
Isolated, regulated DC-DC modules
29 January 2020, Future Electronics , Power Electronics / Power Management
Power density, low weight and ease of use are critical considerations when designing isolated, regulated DC-DC converter systems for a broad range of robotics, UAV, rail, communications and defence/aerospace ...

Read more...
Non-inverting converters for buck or boost operation
29 January 2020, Avnet South Africa , Power Electronics / Power Management
Texas Instruments introduced a family of four high-efficiency, low-quiescent-current (IQ) buck-boost converters that feature tiny packaging with minimal external components for a small solution size. ...

Read more...