Telecoms, Datacoms, Wireless, IoT


What are metamaterials and how do they relate to antennas?

28 August 2019 Telecoms, Datacoms, Wireless, IoT

Metamaterials are an increasingly researched topic, especially where it pertains to modern antenna structures. However, there is a lot of confusion about exactly what metamaterials are and how they are involved in the development of antennas.

To put it simply, metamaterials are material and structure combinations that exhibit properties that are otherwise unknown to occur in nature. For instance, a structured material coating a surface can be used to bend light around sharp angles and effectively make an object concealed behind this surface invisible to certain wavelengths of light.

As electromagnetic radiation used in RF, microwave, and millimetre-wave communications and radar is governed by the same physics as light (just at higher frequencies), similar effects can be achieved using structures that react with longer wavelengths of electromagnetic radiation.

Where nanoscale metamaterials can be used to create materials with negative refraction indices, millimetre-scale metamaterials can be used to create a variety of phenomena, including a negative magnetic permeability or electric permittivity.

The exact effect a metamaterial has depends on the design of the structure and typically only affects electromagnetic radio which the metamaterial structure’s dimensions are a sub-wavelength of. Hence, using modern fabrication and machining technology, metamaterials can be made using semiconductor fabrication technology, thus affecting millimetre-wave, terahertz, and light frequencies, or with common PCB copper structures, affecting radio and microwave frequencies.

To date, researchers have been able to create 2D metamaterial structures, metasurfaces, and distinct combination structures that have had a variety of results. This includes creating metasurfaces that bend RF and microwave energy around a structure, such as with the light-bending invisibility cloak. Moreover, RF and microwave ‘lenses’ have also been created that can focus and collimate RF and microwave energy much like an optical lens manipulates light.

More importantly to RF and microwave engineers, metamaterial structures have been created that enable new antenna designs that can vastly improve the performance of these structures compared to traditional antenna designs. Including structures such as split ring resonators, periodic structures, fractal structures, and other metamaterial structures can be used to design an antenna with much higher gain, wider bandwidths, and with unique antenna patterns.

A key note is that many of these metamaterial-enhanced antennas can be fabricated on planar support materials with low-cost electronic circuit manufacturing technology. Hence, these types of antennas can be made relatively inexpensively and can conform to modern flat-panel antenna designs used with array antennas, cellular antennas, DAS, etc.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Industrial Ethernet time sensitive networking switch
RS South Africa Telecoms, Datacoms, Wireless, IoT
The ADIN3310 and ADIN6310 are 3-port and 6-port Gigabit Ethernet time sensitive networking (TSN) switches with integrated security primarily designed for industrial Ethernet applications.

Read more...
When it comes to long-term reliability of RF amplifier ICs, focus first on die junction temperature
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
When considering the long-term reliability of integrated circuits, a common misconception is that high package or die thermal resistance is problematic. However, high or low thermal resistance, by itself, tells an incomplete story.

Read more...
Automotive-grade digital isolators
Telecoms, Datacoms, Wireless, IoT
The NSI83xx series of capacitive-based isolators from NOVOSENSE Microelectronics offer superior EOS resilience and minimal power noise susceptibility.

Read more...
Why bis means business for LTE Cat 1 IoT connections
NuVision Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Tomaž Petaros, product manager IoT EMEA at Quectel Wireless Solutions explains why the market for Cat 1bis IoT connections is getting busy.

Read more...
Wi-Fi in 2025: When is Wi-Fi 7 the answer?
Telecoms, Datacoms, Wireless, IoT
Wi-Fi 7 introduces multi-link operation and lower latency, a game-changing feature that allows devices to transmit and receive data across multiple frequency bands simultaneously to significantly reduce network congestion.

Read more...
Bluetooth Lite SoCs purpose built for IoT
NuVision Electronics Telecoms, Datacoms, Wireless, IoT
Whether it is enabling predictive maintenance on industrial equipment, tracking assets in dense environments, or running for years on a coin cell battery in ultra-low power sensors, developers need solutions that are lean, reliable, and ready to scale with emerging use cases.

Read more...
LTE Cat 1bis module
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The A7673X LTE Cat 1bis module from SimCom is engineered to meet the growing demands of the IoT industry, offering exceptional performance and seamless integration.

Read more...
Track with precision
Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX provides innovative antennas for cellular, LTE-M, NB-IoT, LoRa, GNSS, BLE, UWB, Wi-Fi, and future Satellite IoT.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
Multi-channel downconverter
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Downconverter from Crane Aerospace is a converter that operates from 2 to 18 GHz and delivers a noise figure of 11 dB with an attenuation range of 25 dB.

Read more...