Telecoms, Datacoms, Wireless, IoT


What are metamaterials and how do they relate to antennas?

28 August 2019 Telecoms, Datacoms, Wireless, IoT

Metamaterials are an increasingly researched topic, especially where it pertains to modern antenna structures. However, there is a lot of confusion about exactly what metamaterials are and how they are involved in the development of antennas.

To put it simply, metamaterials are material and structure combinations that exhibit properties that are otherwise unknown to occur in nature. For instance, a structured material coating a surface can be used to bend light around sharp angles and effectively make an object concealed behind this surface invisible to certain wavelengths of light.

As electromagnetic radiation used in RF, microwave, and millimetre-wave communications and radar is governed by the same physics as light (just at higher frequencies), similar effects can be achieved using structures that react with longer wavelengths of electromagnetic radiation.

Where nanoscale metamaterials can be used to create materials with negative refraction indices, millimetre-scale metamaterials can be used to create a variety of phenomena, including a negative magnetic permeability or electric permittivity.

The exact effect a metamaterial has depends on the design of the structure and typically only affects electromagnetic radio which the metamaterial structure’s dimensions are a sub-wavelength of. Hence, using modern fabrication and machining technology, metamaterials can be made using semiconductor fabrication technology, thus affecting millimetre-wave, terahertz, and light frequencies, or with common PCB copper structures, affecting radio and microwave frequencies.

To date, researchers have been able to create 2D metamaterial structures, metasurfaces, and distinct combination structures that have had a variety of results. This includes creating metasurfaces that bend RF and microwave energy around a structure, such as with the light-bending invisibility cloak. Moreover, RF and microwave ‘lenses’ have also been created that can focus and collimate RF and microwave energy much like an optical lens manipulates light.

More importantly to RF and microwave engineers, metamaterial structures have been created that enable new antenna designs that can vastly improve the performance of these structures compared to traditional antenna designs. Including structures such as split ring resonators, periodic structures, fractal structures, and other metamaterial structures can be used to design an antenna with much higher gain, wider bandwidths, and with unique antenna patterns.

A key note is that many of these metamaterial-enhanced antennas can be fabricated on planar support materials with low-cost electronic circuit manufacturing technology. Hence, these types of antennas can be made relatively inexpensively and can conform to modern flat-panel antenna designs used with array antennas, cellular antennas, DAS, etc.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved