News


Digital laser invented at CSIR

23 October 2013 News

Researchers at South Africa’s Council for Scientific and Industrial Research (CSIR) have claimed another world first with the development of a digital laser that is seen as a milestone in laser technology that could spur future laser-related innovations.

In an article published in the prestigious journal Nature Communications, the research team effectively demonstrated that laser beams can be digitally controlled from within a laser device. The work was done in the mathematical optics group at the CSIR National Laser Centre. The team was led by Prof Andrew Forbes, chief scientist and research group leader, supported by post-doctoral fellow, Dr Igor Litvin, and doctoral students, Sandile Ngcobo and Liesl Burger. Ngcobo performed the breakthrough experimental work as part of his PhD studies.

Sandile Ngcobo with the digital laser experimental setup.
Sandile Ngcobo with the digital laser experimental setup.

Laser devices normally consist of mirrors, light and a casing containing a medium, for example crystal or glass. The medium changes the frequency of the light to create a laser beam with the desired characteristics for the application at hand, whether it be a laser lighting display, a laser printer, DVD player, barcode scanner, surgical device or equipment to cut and weld industrial materials in factories..

In conventional lasers, the shape of the light that comes out is either not controlled at all, or a single shape is selected by expensive optics. For example, when a medical doctor undertakes surgery, the beam must be appropriate for precision cutting.

Alternatively, the laser light can be shaped after exiting the laser using a spatial light modulator – a liquid crystal display (LCD) that can be digitally addressed with greyscale images representing the desired change to the light. The CSIR team has demonstrated for the first time that this can all be done inside the laser.

Forbes explains that the CSIR’s digital laser uses the LCD as one of its mirrors that is fitted at one end of the laser cavity. “Just as with LCD televisions, the LCD inside the laser can be sent pictures to display,” he says. “When the pictures change on the LCD inside, the properties of the laser beams that exit the device change accordingly.”

The researchers have shown that this allows a purely digital control of what comes out of the laser in real time, hence the name ‘digital laser’. “We showed that by sending an appropriate picture to the LCD, any desired laser beam could be created inside the laser device. This is a significant advancement from the traditional approach to laser beam control, which requires costly optics and realignment of the laser device for every beam change. Since this is all done with pictures, the digital laser represents a paradigm shift for laser resonators,” claims Forbes.

In a groundbreaking experiment at the CSIR’s laboratories in Pretoria, the team programmed the LCD to play a video of a selection of images representing a variety of desired laser modes. The result was that the laser output changed in real time from one mode shape to another.

The research team believes that dynamic control of laser modes could open up many future applications, from communications to medicine, and in fact represents a new way of thinking about laser technology and a new platform on which future technologies may be built.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...
Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...