mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Another material shows potential as successor to silicon
8 October 2014, News

The twists and turns keep coming in the quest to find the material that will succeed silicon as the basis for the next generation of semiconductors, as the push continues to keep pace with Moore’s Law, which has consistently shown an uncanny ability to predict (or in certain respects pre-empt) the rate of development in electronics technologies.

Just weeks after Dataweek reported on the latest breakthrough in graphene development, news comes that another material is showing promise as competition to graphene.

An international collaboration of researchers led by a scientist with the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first experimental observation of ultrafast charge transfer in photo-excited, two-dimensional semiconductors known as MX2 materials. The recorded charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Illustration of a MoS<sub>2</sub>/WS<sub>2</sub> heterostructure with a MoS<sub>2</sub> monolayer lying on top of a WS<sub>2</sub> monolayer. Electrons and holes created by light are shown to separate into different layers.
Illustration of a MoS2/WS2 heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers.

“We’ve demonstrated, for the first time, efficient charge transfer in MX2 heterostructures through combined photoluminescence mapping and transient absorption measurements,” says Feng Wang, a condensed matter physicist with Berkeley Lab’s materials sciences division and the University of California (UC) Berkeley’s physics department.

“Having quantitatively determined charge transfer time to be less than 50 femtoseconds, our study suggests that MX2 heterostructures, with their remarkable electrical and optical properties and the rapid development of large-area synthesis, hold great promise for future photonic and optoelectronic applications.”

MX2 monolayers consist of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulphur (S). The resulting heterostructure is bound by the relatively weak intermolecular attraction known as the van der Waals force.

These 2D semiconductors feature the same hexagonal ‘honeycombed’ structure as graphene and superfast electrical conductance, but, unlike graphene, they have natural energy band-gaps. This facilitates their application in transistors and other electronic devices because, unlike graphene, their electrical conductance can be switched off.

“Combining different MX2 layers together allows one to control their physical properties,” explains Wang. “For example, the combination of MoS2 and WS2 forms a type-II semiconductor that enables fast charge separation. The separation of photoexcited electrons and holes is essential for driving an electrical current in a photodetector or solar cell.”

In demonstrating the ultrafast charge separation capabilities of atomically thin samples of MoS2/WS2 heterostructures, Wang and his collaborators have opened up potentially rich new avenues, not only for photonics and optoelectronics, but also for photovoltaics.

“MX2 semiconductors have extremely strong optical absorption properties and, compared with organic photovoltaic materials, have a crystalline structure and better electrical transport properties,” Wang says. “Factor in a femtosecond charge transfer rate and MX2 semiconductors provide an ideal way to spatially separate electrons and holes for electrical collection and utilisation.”

Wang and his colleagues are studying the microscopic origins of charge transfer in MX2 heterostructures and the variation in charge transfer rates between different MX2 materials. “We’re also interested in controlling the charge transfer process with external electrical fields as a means of utilising MX2 heterostructures in photovoltaic devices,” Wang concludes.


  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Altron Arrow and Thingstream to boost IoT innovation in SA
    28 August 2019, Altron Arrow, News
    Altron Arrow has recently become a distributor for Thingstream, a global provider of IoT connectivity solutions which is expanding into South Africa via a local partner network in order to grow the local ...
  • From the editor's desk: Making an aaS of ourselves
    28 August 2019, Technews Publishing, News
    First of all, I must extend the sincere apologies of Technews Publishing to Hi-Q Electronics. We have worked closely with Hi-Q for many years and yet still managed to get its address and contact details ...
  • Electronics news digest
    28 August 2019, News
    South Africa •Canadian technology company Sciencetech is now distributed in South Africa by Intercal. For over 33 years, Sciencetech’s products have been exported to countries around the world, within ...
  • Clearing the static: Electrostatic packaging - Topic 6
    28 August 2019, Altico Static Control Solutions, News
    The purpose of electrostatic discharge (ESD) packaging is to protect ESD-sensitive objects from ESD damage; especially when items are being transported outside of the designated ESD protected area. ESD ...
  • What can sport teach us about MRO procurement?
    28 August 2019, RS Components (SA), News
    Just like triathlon transitions, if you don?t respect the details and aren?t supportive about making manufacturing flexible, as a supplier you aren?t contributing to your customers? success.
  • AREI hosts industry for business breakfast
    28 August 2019, News
    Attendees of a business breakfast hosted by AREI (Association of Representatives for the Electronics Industry) on 24 July were treated to an inspirational talk by computer scientist and entrepreneur Stafford Masie.
  • Win a Microchip evaluation kit
    28 August 2019, News
    Dataweek readers are being offered the chance to win a SAM L21 Xplained Pro evaluation kit for evaluating and prototyping with Microchip Technology’s ultra-low-power SAM L21 ARM Cortex-M0+ based microcontrollers ...
  • Wits University to feature at AI Expo Africa
    28 August 2019, News
    Wits University will be sending a high-level delegation to this year’s AI Expo Africa, where it will launch a major research initiative that is intended to bring about a step change in scientific research ...
  • u-blox sells 500 millionth GNSS receiver
    28 August 2019, RF Design, News
    u-blox recently sold its 500 millionth global navigation satellite system (GNSS) receiver. As the only technology capable of delivering absolute position anywhere on the planet, GNSS-based positioning ...
  • New African AI initiative at Wits University
    28 August 2019, News
    The Molecular Sciences Institute (MSI) at the University of the Witwatersrand (Wits) in Johannesburg, South Africa, in partnership with the Cirrus Initiative, today announced plans for a new artificial ...
  • NuVision Electronics to host wireless seminars
    28 August 2019, NuVision Electronics, News
    NuVision Electronics will soon be holding a seminar series highlighting its offering of technology for the wireless development ecosystem. The two seminars are free of charge to attend, and will take ...
  • Wits University to feature at AI Expo Africa
    31 July 2019, News
    Wits University will be sending a high-level delegation to this year’s AI Expo Africa, where it will launch a major research initiative that is intended to bring about a step change in scientific research ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.