News


Another material shows potential as successor to silicon

8 October 2014 News

The twists and turns keep coming in the quest to find the material that will succeed silicon as the basis for the next generation of semiconductors, as the push continues to keep pace with Moore’s Law, which has consistently shown an uncanny ability to predict (or in certain respects pre-empt) the rate of development in electronics technologies.

Just weeks after Dataweek reported on the latest breakthrough in graphene development, news comes that another material is showing promise as competition to graphene.

An international collaboration of researchers led by a scientist with the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first experimental observation of ultrafast charge transfer in photo-excited, two-dimensional semiconductors known as MX2 materials. The recorded charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Illustration of a MoS<sub>2</sub>/WS<sub>2</sub> heterostructure with a MoS<sub>2</sub> monolayer lying on top of a WS<sub>2</sub> monolayer. Electrons and holes created by light are shown to separate into different layers.
Illustration of a MoS2/WS2 heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers.

“We’ve demonstrated, for the first time, efficient charge transfer in MX2 heterostructures through combined photoluminescence mapping and transient absorption measurements,” says Feng Wang, a condensed matter physicist with Berkeley Lab’s materials sciences division and the University of California (UC) Berkeley’s physics department.

“Having quantitatively determined charge transfer time to be less than 50 femtoseconds, our study suggests that MX2 heterostructures, with their remarkable electrical and optical properties and the rapid development of large-area synthesis, hold great promise for future photonic and optoelectronic applications.”

MX2 monolayers consist of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulphur (S). The resulting heterostructure is bound by the relatively weak intermolecular attraction known as the van der Waals force.

These 2D semiconductors feature the same hexagonal ‘honeycombed’ structure as graphene and superfast electrical conductance, but, unlike graphene, they have natural energy band-gaps. This facilitates their application in transistors and other electronic devices because, unlike graphene, their electrical conductance can be switched off.

“Combining different MX2 layers together allows one to control their physical properties,” explains Wang. “For example, the combination of MoS2 and WS2 forms a type-II semiconductor that enables fast charge separation. The separation of photoexcited electrons and holes is essential for driving an electrical current in a photodetector or solar cell.”

In demonstrating the ultrafast charge separation capabilities of atomically thin samples of MoS2/WS2 heterostructures, Wang and his collaborators have opened up potentially rich new avenues, not only for photonics and optoelectronics, but also for photovoltaics.

“MX2 semiconductors have extremely strong optical absorption properties and, compared with organic photovoltaic materials, have a crystalline structure and better electrical transport properties,” Wang says. “Factor in a femtosecond charge transfer rate and MX2 semiconductors provide an ideal way to spatially separate electrons and holes for electrical collection and utilisation.”

Wang and his colleagues are studying the microscopic origins of charge transfer in MX2 heterostructures and the variation in charge transfer rates between different MX2 materials. “We’re also interested in controlling the charge transfer process with external electrical fields as a means of utilising MX2 heterostructures in photovoltaic devices,” Wang concludes.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Jemstech to produce PCB assemblies for Kamstrup
Jemstech News
Jemstech is pleased to announce that they have successfully concluded a supplier agreement with Kamstrup A/S in Denmark, a leading supplier of intelligent metering solutions in the global market.

Read more...
Webinar – How to develop intelligence edge IoT devices
News
Join Quectel’s expert-led webinar, with a speaker from Qualcomm Technologies, to learn more about how to plan, test and deploy successful IoT devices drawing on the unique advantages of intelligence at the edge.

Read more...
SAIMC training at AATF 2025
News
The SAIMC will deliver a powerful series of training sessions and technical workshops during AATF 2025, providing engineers, technologists, and technicians with the tools they need to professionally register, stay compliant, and lead industrial innovation.

Read more...
Webinar – Discover the ST BrightSense ecosystem
News
This webinar is for camera systems developers who need effective, ready-to-use solutions to keep pace with edge AI vision technologies and the rise of new applications spanning factory automation, robotics and drones, healthcare, traffic and security, sports and entertainment, and personal electronics.

Read more...
Altron celebrates 60th birthday with a call to rebuild Johannesburg
Altron Arrow News
Altron is celebrating its 60th birthday by honouring Johannesburg’s heritage and encouraging business, government and civil society to come together and respond to our President’s call to rebuild Johannesburg.

Read more...
Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
Jemstech to produce PCB assemblies for Kamstrup
Jemstech News
Jemstech is pleased to announce that they have successfully concluded a supplier agreement with Kamstrup A/S in Denmark, a leading supplier of intelligent metering solutions in the global market.

Read more...
New appointments at Hiconnex
Hiconnex News
Hiconnex, a leading provider of electronic components and solutions, has announced key appointments to support its continued growth and commitments to its clients.

Read more...
FoundriesFactory service more affordable for smaller OEMs
News
Foundries.io has announced a new, tiered pricing scheme which reduces the cost of its highly regarded FoundriesFactory service for OEMs in the development phase of a new edge AI or Linux OS-based product.

Read more...
DMASS 2024 results
News
The semiconductor business faced a severe downturn, with a 31,9% decrease compared to 2023 and a 30,3% drop in Q4 2024 compared to the same period last year.

Read more...