Power Electronics / Power Management

Battery design trends for IoT

23 October 2019 Power Electronics / Power Management

The Internet of Things (IoT) phenomenon is allowing the collection of data from sensor nodes practically anywhere in the environment, and giving non-electronic objects the ability to communicate, opening up a whole new sphere of applications for electronic systems.

Selecting batteries for Internet of Things connected systems can be tricky, as there is such a wide variety of application types.

For the ubiquitous sensor node at the periphery of the Internet of Things – things like thermostats, building automation sensors and light switches – this type of system has a very specific power profile. The application will typically be in sleep mode for the vast majority of the time, waking up only to perform a measurement, or to activate a low-power wireless connection such as Bluetooth Low Energy.

When in sleep mode, the device consumes a very small amount of power, but when active, a burst of power is required. These devices are very low-power overall because the sleep period is generally many orders of magnitude longer than the active period.

These types of applications typically use coin cell batteries because of their low overall power requirement. Coin cells may have alkaline chemistries, with a cell voltage of 1,5 V. This drops to 0,9 V when discharged. Applications that require higher voltages may use Li-ion coin cell batteries, which are also widely available. This type of cell offers 3,0 V when fully charged, dropping to 2,2 V when discharged.

There are many variants on the exact Li-ion chemistry used, which maximise the different properties. For example, type BR maximises the battery’s capacity – Panasonic’s best BR coin cells have capacities up to 500 mAh (BR3032). Type CR, on the other hand, minimises the battery’s internal impedance, which means it can supply higher pulse currents.

Also at the periphery of the Internet of Things are some wearable accessories with similar power profiles, such as heart rate monitors that communicate data back to a sports watch or smartphone. Some wearables are able to harvest enough energy from the wearer’s movements that they can use this to power their electronics; however, energy as a power source can be unpredictable and may not coincide with the active period for the electronics. Most energy harvesting devices therefore require a rechargeable battery which is charged by the energy harvesting subsystem, so that energy can be used as and when it’s needed.

Rechargeable coin cells are available with excellent energy densities. For example, Varta’s Coin Power series offers nominal 3,7 V batteries, 5,4 mm high, measuring 12,1 mm (diameter) for the 50 mAh capacity and

16,1 mm for the 100 mAh capacity version. These button cells, as small coin cells are often called, offer low internal impedance and discharge currents up to 5C (that is, 250 mA or 500 mA, respectively).

Rechargeable coin cells from Varta’s Coin Power series.

Outside of coin cells, other small lightweight battery form factors for wearable devices include Panasonic’s pin type rechargeable battery, intended for thin applications like spectacle frames and pens. This 3,75 V battery measures 3,5 mm (diameter) by 20 mm, and weighs just 0,6 g.

Panasonic’s pin-type rechargeable battery.

Industrial temperatures

Aside from consumer electronics, the Internet of Things also encompasses the automotive and industrial environments. For industrial process control in particular, installing wireless sensors to tell a central system what is going on all over a factory is a big part of enabling Industry 4.0. Industrial sensor networks may use energy harvesting, perhaps from heat energy expended in the process itself, or from the movement of a robotic arm, but they still require batteries.

Though the power profile may be similar to consumer devices, batteries for these applications will need to withstand much harsher environments and maintain reliability though conditions are difficult. Specialised casings and seals can prevent dust, moisture and chemical ingress, but it can be hard to protect against very hot and very cold temperatures that affect the batteries’ chemistry.

For harsh environments like these, Tadiran has developed AAA and AA format batteries which may be charged at temperatures between -40°C and 85°C, a big improvement on typical Li-ion rechargeables which operate over the range 0°C to 60°C. This type of battery is actually a hybrid layer capacitor (HLC) which can produce the current pulses needed for wireless communication, up to 5 A. They also offer a low self-discharge rate, less than 5% per year, and are expected to last more than 10 years in the application.

Rechargeable Tadiran batteries for harsh environments.

Ultimately, the choice of battery for any application in the Internet of Things will depend on the power profile of the application, in combination with any environmental factors such as temperature. If you need advice on battery performance, contact Avnet South Africa using the details below.


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power delivery over USB Type-C will open up new applications
25 March 2020, Altron Arrow , Power Electronics / Power Management
The enablement of SuperSpeed is just one reason why we can expect the USB interface to dominate for many years to come, but power delivery must also be a major factor in that.

MEMS-based environmental pressure sensors
25 March 2020, Avnet South Africa , Analogue, Mixed Signal, LSI
Bourns Sensors & Controls’ product line is introducing four new series of environmental sensors based on microelectromechanical systems (MEMS) technology. These four new series are designed for the customer ...

Bluetooth 5.0 Low Energy module
25 March 2020, Avnet South Africa , Telecoms, Datacoms, Wireless, IoT
An output power of up to +8 dBm and the high sensitivity of the nRF52840, in combination with the LE coded PHY, make the module very attractive for applications that require a long range. The Bluetooth ...

Industrial power module
25 March 2020, Würth Elektronik eiSos , Power Electronics / Power Management
The components in a SIP-3 package represent cost-effective solutions to meet the requirements for the transient capability of a 24 V industrial voltage network. The new modules operate from 6 to 36 V ...

Complete design solution for energy efficient motor driving system
25 March 2020, Avnet South Africa , Power Electronics / Power Management
Electric motors are a powerhouse user of electricity worldwide, accounting for about two-thirds of industrial electricity consumption. The International Energy Agency reports that electric motors account ...

Miniature automotive MOSFETs
25 March 2020, Avnet South Africa , Power Electronics / Power Management
Diodes Incorporated announced the introduction of the 40 V-rated DMTH4008LFDFWQ and 60 V-rated DMTH6016LFDFWQ automotive-compliant MOSFETs packaged in DFN2020. These miniature MOSFETs occupy just 10% ...

PCB-mount AC-DC power supplies
25 March 2020, Vepac Electronics , Power Electronics / Power Management
Complementing the previously released 3 W, 5 W and 10 W models, the VCE20 and VCE40 series from XP Power provide 20 and 40 Watts of power respectively and offer an encapsulated version as well as a lower-cost ...

High-voltage MOSFET for low-frequency switching
25 March 2020 , Power Electronics / Power Management
With the introduction of the 600 V CoolMOS S7 SJ MOSFET family – uniquely fitting a 22 mΩ chip into an innovative SMD package – Infineon Technologies is aiming to set a new benchmark for power density, ...

New PIC MCU family
25 March 2020, Avnet South Africa , DSP, Micros & Memory
In microcontroller (MCU)-based system design, software is often the bottleneck for both time to market and system performance. By offloading many software tasks to hardware, Microchip Technology’s new ...

Modern flanged enclosures for IIoT and sensor applications
25 March 2020, Avnet South Africa , Enclosures, Racks, Cabinets & Panel Products
OKW Gehäusesysteme has expanded its range of enclosures with the new EASYTEC. The special feature of this enclosure range is that there are fully integrated lugs on the short end faces of the bottom part. ...