mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Battery design trends for IoT
23 October 2019, Power Electronics / Power Management

The Internet of Things (IoT) phenomenon is allowing the collection of data from sensor nodes practically anywhere in the environment, and giving non-electronic objects the ability to communicate, opening up a whole new sphere of applications for electronic systems.

Selecting batteries for Internet of Things connected systems can be tricky, as there is such a wide variety of application types.

For the ubiquitous sensor node at the periphery of the Internet of Things – things like thermostats, building automation sensors and light switches – this type of system has a very specific power profile. The application will typically be in sleep mode for the vast majority of the time, waking up only to perform a measurement, or to activate a low-power wireless connection such as Bluetooth Low Energy.

When in sleep mode, the device consumes a very small amount of power, but when active, a burst of power is required. These devices are very low-power overall because the sleep period is generally many orders of magnitude longer than the active period.

These types of applications typically use coin cell batteries because of their low overall power requirement. Coin cells may have alkaline chemistries, with a cell voltage of 1,5 V. This drops to 0,9 V when discharged. Applications that require higher voltages may use Li-ion coin cell batteries, which are also widely available. This type of cell offers 3,0 V when fully charged, dropping to 2,2 V when discharged.

There are many variants on the exact Li-ion chemistry used, which maximise the different properties. For example, type BR maximises the battery’s capacity – Panasonic’s best BR coin cells have capacities up to 500 mAh (BR3032). Type CR, on the other hand, minimises the battery’s internal impedance, which means it can supply higher pulse currents.

Also at the periphery of the Internet of Things are some wearable accessories with similar power profiles, such as heart rate monitors that communicate data back to a sports watch or smartphone. Some wearables are able to harvest enough energy from the wearer’s movements that they can use this to power their electronics; however, energy as a power source can be unpredictable and may not coincide with the active period for the electronics. Most energy harvesting devices therefore require a rechargeable battery which is charged by the energy harvesting subsystem, so that energy can be used as and when it’s needed.

Rechargeable coin cells are available with excellent energy densities. For example, Varta’s Coin Power series offers nominal 3,7 V batteries, 5,4 mm high, measuring 12,1 mm (diameter) for the 50 mAh capacity and

16,1 mm for the 100 mAh capacity version. These button cells, as small coin cells are often called, offer low internal impedance and discharge currents up to 5C (that is, 250 mA or 500 mA, respectively).

Rechargeable coin cells from Varta’s Coin Power series.
Rechargeable coin cells from Varta’s Coin Power series.

Outside of coin cells, other small lightweight battery form factors for wearable devices include Panasonic’s pin type rechargeable battery, intended for thin applications like spectacle frames and pens. This 3,75 V battery measures 3,5 mm (diameter) by 20 mm, and weighs just 0,6 g.

Panasonic’s pin-type rechargeable battery.
Panasonic’s pin-type rechargeable battery.

Industrial temperatures

Aside from consumer electronics, the Internet of Things also encompasses the automotive and industrial environments. For industrial process control in particular, installing wireless sensors to tell a central system what is going on all over a factory is a big part of enabling Industry 4.0. Industrial sensor networks may use energy harvesting, perhaps from heat energy expended in the process itself, or from the movement of a robotic arm, but they still require batteries.

Though the power profile may be similar to consumer devices, batteries for these applications will need to withstand much harsher environments and maintain reliability though conditions are difficult. Specialised casings and seals can prevent dust, moisture and chemical ingress, but it can be hard to protect against very hot and very cold temperatures that affect the batteries’ chemistry.

For harsh environments like these, Tadiran has developed AAA and AA format batteries which may be charged at temperatures between -40°C and 85°C, a big improvement on typical Li-ion rechargeables which operate over the range 0°C to 60°C. This type of battery is actually a hybrid layer capacitor (HLC) which can produce the current pulses needed for wireless communication, up to 5 A. They also offer a low self-discharge rate, less than 5% per year, and are expected to last more than 10 years in the application.

Rechargeable Tadiran batteries for harsh environments.
Rechargeable Tadiran batteries for harsh environments.

Ultimately, the choice of battery for any application in the Internet of Things will depend on the power profile of the application, in combination with any environmental factors such as temperature. If you need advice on battery performance, contact Avnet South Africa using the details below.


Credit(s)
Supplied By: Avnet South Africa
Tel: +27 11 319 8600
Fax: +27 11 319 8650
Email: sales@avnet.co.za
www: www.avnet.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • 6U VPX power supply
    23 October 2019, Conical Technologies, Power Electronics / Power Management
    SynQor announced its new universal 85 to 264 Vrms AC-input VPX power supply for critical military, aerospace and shipboard applications. This 6U VPX power supply, designed to meet VITA 46 standards, allows ...
  • Automotive H-bridge driver
    23 October 2019, Altron Arrow, Power Electronics / Power Management
    The TLE985x H-bridge MOSFET driver IC product family from Infineon Technologies is an ideal fit for compact and cost-effective motor control solutions. It targets automotive applications such as sunroof, ...
  • Radiation-tolerant PolarFire FPGA
    23 October 2019, Avnet South Africa, Programmable Logic
    Developers of spacecraft electronics use radiation-tolerant (RT) field programmable gate arrays (FPGAs) to create on-board systems that meet the demanding performance needs of future space missions, survive ...
  • 40 Watt DC-DC converters for industrial use
    23 October 2019, Conical Technologies, Power Electronics / Power Management
    Traco Power announced the release of its new TEN 40WEI range of industrial converters. Due to a new design approach, it offers a cost-efficient solution with no concession on quality or reliability as ...
  • Buck converter with lowest quiescent current
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Texas Instruments introduced an ultra-low-power switching regulator with what it claimed as the industry’s lowest operating quiescent current (IQ) at 60 nA. The TPS62840 synchronous step-down converter ...
  • 60 V synchronous buck converter
    23 October 2019, NuVision Electronics, Power Electronics / Power Management
    The MPQ4572 is a fully integrated, fixed-frequency synchronous step-down converter. It can achieve up to 2 A continuous output current with peak current control for excellent transient response. The wide ...
  • Power controller for brushless DC motors
    23 October 2019, RF Design, Power Electronics / Power Management
    The new PAC5527 power application controller (PAC) from Qorvo is a system-on-chip (SoC) controller enabling high efficiency, high performance and a longer battery life in tools powered by brushless DC ...
  • Points to consider when running power supplies from portable generators
    23 October 2019, Accutronics, Power Electronics / Power Management
    Manufacturers of end systems should specify what class of generator their products should be used with, and should question what class was used if they do see equipment failures.
  • Developing opportunities around ‘hybrid’ renewable energy power plants
    23 October 2019, Forbatt SA, Power Electronics / Power Management
    If we let our imaginations run wild in the local context – and imagine the possibilities that come from having the cheapest energy in the world – the creative minds amongst us could have a field day.
  • High-voltage power supplies
    23 October 2019, Vepac Electronics, Power Electronics / Power Management
    The XP Emco range of high-voltage power supplies meets a wide range of high-performance demands. It includes a broad range of DC-DC converter modules with output voltages from 100 V to 10 kV in both proportional ...
  • Four approaches to implement a wearable sensor hub
    23 October 2019, Avnet South Africa, DSP, Micros & Memory
    As more sensors are added to nearly every electronic device including smartphones, tablets and wearables, more power is needed to run sensor data and turn it into useful information. Data retrieved from ...
  • 5 Watt AC-DC converter
    23 October 2019, Avnet South Africa, Power Electronics / Power Management
    Aimtec’s new AMEL5-277NZ is an AC-DC converter which has been designed to offer greater economies of scale due to greater production automation, leading to improved reliability and performance. The product ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.