News


Neurological biosensor chip directly measures electrical activity in living cells

12 March 2003 News

Infineon Technologies and the Max Planck Institute have jointly described how they directly connected a newly developed biosensor chip with living nerve cells to read electrical signals produced by the cells. The ‘Neuro-Chip’ development was described in a paper presented at the recent international solid-state circuits conference (ISSCC).

Neurons are the specialised cells that make up the nervous systems of all living things. Nerve tissues, comprised of many associated nerve cells, are the principal component of the brain and spinal cord. Nerve cells communicate with each other through electrical pulses, so the ability to read these signals and record them in a computer system holds the promise of new insights into neurological processes.

"Concerning the signal-to-noise ratio this chip operates close to elementary physical limits," said Dr Roland Thewes, the senior director responsible for biosensor chip activities within the corporate research centre at Infineon Technologies. "Infineon is able to draw on 50 years of knowledge in chip making to develop biochips that bring the advantages of silicon technology to biochemistry and new drug research."

According to Infineon, the neuro-chip integrates 128 x 128 sensors in an array pattern covering one square millimetre. A sophisticated electronic circuit is integrated below each sensor, which amplifies and processes the extremely weak signals for transfer to a computer system for processing. Individual neurons are placed into a nutrient solution above the sensor array, which keeps the neurons alive. Infineon says that the sensor density is approximately 300 times greater than today's common methods for studying neurons, which use glass substrates with vapour-deposited metallic lanes to contact the neuron. Each sensor on the chip is separated by a distance of just eight microns. Typical size of neurons is between 10-50 mm.

The neuro-chip’s sensor grid is 1 x 1 mm. The integrated circuitry enables it to record, amplify and process the more than 32 million information bytes per second that are delivered by the 16 384 sensors on the grid
The neuro-chip’s sensor grid is 1 x 1 mm. The integrated circuitry enables it to record, amplify and process the more than 32 million information bytes per second that are delivered by the 16 384 sensors on the grid

Instead of sequentially checking every single neuron, the neuro-chip surveys several neurons at the same time, which gives more statistically relevant data. Additionally, the chip enables recording of the operating sequence of electrical activity within nerve tissue over a defined time. Every second, it can record more than 2000 single values for each of its 16384 sensors. The data can then be transformed into a colour picture for visual analysis. Researchers can detect from this data how complete nerve tissues react to electrical stimulation or certain chemical substances in a given period of time.

A living nerve cell connected to the neuro-chip. The typical size of neurons is between 10–50 mm
A living nerve cell connected to the neuro-chip. The typical size of neurons is between 10–50 mm

Infineon says that the chip is based on a standard CMOS technology extended with additional process steps to realise the capacitive sensors array. Total area measures 5 x 6 mm, including the circuitry required to amplify, process, and transmit the data off-chip. The neuro-chips can detect and handle voltage changes with peaks ranging from 100 µV to 5 mV.

For more information see www.infineon.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...
Zuchongzhi-3 sets new benchmark
News
This latest superconducting quantum computing prototype features 105 qubits and 182 couplers to operate at a speed 10¹5 times faster than the most powerful supercomputer currently available.

Read more...
Automatic device attestation certificate for Panasonic
News
DigiCert recently announced it has partnered with Panasonic Industry Europe to integrate DigiCert Device Trust Manager with Panasonic’s PAN-MaX intelligent manufacturing service for seamless Matter certification of interoperable smart home devices.

Read more...
From the editor's desk: Are we really being ripped off?
Technews Publishing News
To the surprise of many customers, installing solar panels does not always eliminate their utility bill – and in some cases, the power utility may impose additional charges on solar-powered homes.

Read more...
Winner of the Advanced Electronics Challenge
Avnet Silica News
Avnet Silica has named Hydronauten winner of the Advanced Electronics Challenge for breakthrough AI-driven vibration damping technology.

Read more...