Telecoms, Datacoms, Wireless, IoT


How flies can teach us to communicate efficiently

27 August 2003 Telecoms, Datacoms, Wireless, IoT

Mother Nature is proving a most resourceful teacher for leading researchers in the burgeoning communications technology world. In a revolutionary approach to managing networks for the next generation of military battlefield communications, inspiration has been found in the lifestyle of a humble insect.

It has long been known that the efficient use of the radio spectrum is the vital key to maintaining effective communications for many civil and military radio systems. In the continued search over the years for this elusive matter, many techniques have been investigated ranging through such diverse and arcane approaches as genetics and the crystallisation process.

Now, innovative scientists from BTexact, QinetiQ, and the Ministry of Defence in the UK are adapting a complex algorithm based on the development of the common fruit fly. The algorithm basically allows the base stations in a mobile phone network to negotiate with each other to decide how the available radio frequencies will be divided to meet the demand for calls without causing unacceptable interference.

The patented invention was inspired by the behaviour of cells in the fruit fly Drosophila Melanogaster that has been the subject of intensive academic research for nearly 100 years. During the fly's development, some cells must decide whether to make bristles - the sensory hairs of the adult fly. They do this by sending signals to the neighbouring cells and 'listening' for signals from those neighbours. As a result the fly gets the right pattern of bristles without any central control.

It was realised that this principle of self-organisation could be exploited for modern mobile phone networks and allow the network to adapt continuously to changes in demand for calls, and to 'heal' in the event of a base-station failure. There would no longer be the need for a central organiser to track events in the network and replan frequency use to accommodate faults and changes in demand.

At the same time, researchers at QinetiQ's R&D facility had been looking into novel designs for a future battlefield spectrum-management architecture using dynamic and distributed frequency assignment.

In a battlefield environment, networks must continue to function in the face of serious disruption such as unplanned movements and accidental or deliberate interference from other radio transmitters. Central planning then becomes very challenging and may be overtaken by events.

Key to this problem is to distribute the assignment process throughout the battlefield, rather than relying on a centralised process. The self-organising features of the BTexact algorithm could be exploited and integrated within the proposed QinetiQ architecture. Research work with BTexact has been initiated, with a view to adapting the algorithm to operate within a battlefield spectrum management system.

For more information contact QinetiQ, Douglas Millard, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6/BLE module enables rapid development
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Telit Cinterion has announced the WE310K6, a fully integrated, low-power module featuring dual-band, dual-stream Wi-Fi 6, and dual-mode Bluetooth/BLE.

Read more...
Low phase noise amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The MAAL-011158 from Macom is an easy-to-use low-phase noise amplifier that provides 12 dB of gain in a 32-lead QFN plastic package.

Read more...
Webinar: Enabling the digital transformation of IIoT with Bluetooth
Telecoms, Datacoms, Wireless, IoT
Key industrial use cases for Bluetooth will be reviewed, including the main performance requirements for Bluetooth in industrial applications, and the technical features available.

Read more...
Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...